Volume 17, Issue 2 (2015)                   JAST 2015, 17(2): 287-298 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golpour I, Amiri Chayjan R, Amiri Parian J, Khazaei J. Prediction of Paddy Moisture Content during Thin Layer Drying Using Machine Vision and Artificial Neural Networks. JAST. 17 (2) :287-298
URL: http://journals.modares.ac.ir/article-23-10165-en.html
1- Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran.
2- Department of Agricultural Technical Engineering, College of Abouraihan, University of Tehran, Islamic Republic of Iran.
Abstract:   (5658 Views)
The goal of this study was to predict the moisture content of paddy using machine vision and artificial neural networks (ANNs). The grains were dried as thin layer with air temperatures of 30, 40, 50, 60, 70, and 80°C and air velocities of 0.54, 1.18, 1.56, 2.48 and 3.27 ms-1. Kinetics of L*a*b* were measured. The air temperature, air velocity, and L*a*b* values were used as ANN inputs. The results showed that with increase in drying time, L* decreased, but a* and b* increased. The effect of air temperature and air velocity on the L*a*b* values were significant (P< 0.01) and not significant (P> 0.05), respectively. Changing of color values at 80°C was more than other temperatures. The optimized ANN topology was found as 5-7-1 with Logsig transfer function in hidden layer and Tansig in output layer. Mean square error, coefficient of determination, and mean absolute error of the optimized ANN were 0.001, 0.9630, and 0.031, respectively. 
Full-Text [PDF 689 kb]   (6745 Downloads)    
Article Type: Research Paper | Subject: Agricultural Machinery|Food Science and Technology
Received: 2013/12/30 | Accepted: 2014/06/14 | Published: 2015/03/1

Add your comments about this article : Your username or Email:
CAPTCHA code