Research Article

Interactions between *Orius albidipennis* and *Aphidius colemani* (Hymenoptera: Braconidae) for the control of *Aphis gossypii* on greenhouse cucumber

Mehran Attarzadeh¹, Ali Rajabpour¹*, Mohammad Farkhari² and Arash Rasekh³

¹. Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran.
². Department of Genetics and Plant Productions, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran.
³. Department of Plant Protection, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract: *Aphis gossypii* Glover (Hemiptera: Aphididae) is an important cucumber pest especially in greenhouse. The efficacy of simultaneous release of generalist predator, *Orius albidipennis* Reuter (Hemiptera: Anthocoridae) and a specialist parasitic wasp, *Aphidius colemani* Viereck (Hymenoptera: Braconidae), was evaluated in laboratory conditions against the pest. For this purpose, investigations were carried out on preference of the predator between parasitized and non-parasitized aphids. In addition, production of volatile infochemicals between the natural enemies (NEs) was studied by olfactometry trials. In another part of this research, systemic production of volatile synomone by the infested cucumber plants for attraction of each NE was examined by the olfactometry tests. Results revealed that *O. albidipennis* had no obvious preference to either the parasitized or non-parasitized aphids, while both NEs were significantly attracted to volatiles emitted from infested host plants. Our findings revealed that each of the NEs avoided odors which indicated the presence of another intraguild competitor. The documented facts from the entire study reveal that the NEs are good biocontrol agents against *A. gossypii* on cucumber, but their avoidance from each other makes simultaneous release of the predator and parasitic wasps unsuitable for biological control of this aphid.

Keywords: predatory bug, parasitoid wasp, simultaneous release, infochemicals, aphid biocontrol

Introduction

Problems associated with chemical pesticides, such as pest resistance, side effect on non-target organisms, secondary pest outbreaks, environmental contaminations etc. (Pedigo, 2002) resulted in the development of integrated pest management (IPM) theory in 1970 (Knipling, 1972). Biological control has been a valuable method in IPM programs around the world for many years (Orr, 2009). Two natural enemy species are frequently released simultaneously to control one pest species in greenhouse biological control programs (Orr, 2009). In some cases, releasing of two or more biocontrol agents increased mortality by 12.97% and reduced pest abundance by 27.17% compared to single release...
Interactions between *O. albidipennis* and *A. colemani* against aphid pests (Stiling and Cornelissen, 2005). In simultaneous release of two natural enemies against a pest, intraguild predation (IGP) and interspecific competition (IC) between the natural enemies might affect the biological control and these phenomena can directly or indirectly disrupt biological control programs (Orr, 2009). The effect of IGP and IC on biocontrol efficacy of some ant herbivores and some parasitoid wasps as wasped by some authors. For example, occurrence of IGP between *Anthocoris nemorum* L. and *Aphidius colemani* Viereck on *Myzus persicae* Sulzer (Hom., Anthocoridae) (Meyling et al., 2004), *Orius majusculus* Reuter and *Encarsia formosa* Gahan (Hym., Aphelinidae) on *Bemisia tabaci* Gennadius (Hom., Aleurodidae) pupa (Sohrabi et al., 2012) were studied in laboratory conditions. Moreover, IGP between other generalist predators like *Hippodamia convergens* Guérin-Méneville (Col., Coccinellidae) and *Lysiphlebus testaceipes* Cresson (Hym., Braconidae) on *Aphis gossypii* Glover (Colfer and Rosenheim, 2001), *Harmonia axyridis* Pallas (Col., Coccinellidae) and *Aphelinus asychis* Walker (Hym., Aphelinidae) on *Macrosiphum euphorbiæ* Thomas (Hom. Aphididae) (Synder et al., 2004), *Macrolopus pygmeus* Wagner (Het., Miridae) and *Trichogramma macro* Nagaraja and Nagarkatti (Hym., Trichogrammatidae) on *Tuta absoluta* Meyreck eggs (Chailleux et al., 2013), *Coccinella septempunctata* L. (Col. Coccinellidae) and *Lysiphlebus fabarum* Marshall (Hym., Braconidae) on *Aphis fabae* Scopoli (Meyhofer and Klug, 2002), *H. axyridis* and *A. asychis* on *Myzus persicae* Sulzer (Fu et al., 2017) were previously evaluated.

Chemical information plays a critical role in foraging behavior of natural enemies. The chemical information can originate from herbivore, its food, or other natural enemies (Takabayashi et al., 1994). The importance of infochemicals, in foraging behavior of parasitoids and predators has been previously documented. For instance, olfactory tests revealed that *Anthocoris* spp. respond to pear trees infested by *Psylla pyrii* L. (Hem., Psyllidae) (Drukker et al., 1995). In addition, positive behavioral response of *O. tristicolor* (White) to bean plants damaged by *Frankliniella occidentalis* Pergande (Thys., Thripidae) *Tetranychus urticae* Koch (Acari, Teranychidae), *O. sauteri* Poppius to eggplant and infestation by *Thrips palmi* Karny (Thys., Thripidae) (Mochizuki and Yano, 2007) were reported. Effect of plant infochemicals on behavior and preference of some parasitoid wasps like *Cotesia glomerata* L. (a parasitoid of *Pieris rapae* L. on cabbage) (Steinberg et al., 1992), *C. sesamiae* Cameron (a parasitoid of *Chilo* spp. on maize and sorghum) (Ngi-Song et al., 1996), *Trichogramma chilonis* Ishii (a parasitoid of *Helicoverpa armigera* Hubner in sorghum) (Romeis et al., 1997) and *Microtonus hyperodae* Loan (Hymenoptera: Braconidae) (a parasitoid of *Listronotus oregonensis* LeConte on graminæ) (Cournoyer and Boivin, 2004) were studied in a tritrophic system.

Our ability to develop successful biocontrol programs will be enhanced by experimental or field studies which address the probable trophic interactions occurring in an agricultural system (Rosenheim et al., 1995).

Predatory bugs which belong to the genus *Orius* are generalist predators of various soft bodied arthropods like aphids (Reitz et al., 2006). *O. albidipennis* Reuter is a common predator in several regions of Iran and its ability as a potential biocontrol agent has been reported especially in greenhouse conditions (Rajabpour et al., 2011, Salehi et al., 2016, Banihashemi et al., 2017). Another important biological control agent of aphids is *A. colemani* which is released commercially against the pest in greenhouses (Enkegaard, 2005). The wasp larvae develop entirely inside aphid body and do not kill their host until the larvae are ready to pupate (Enkegaard, 2005). Among the many species of greenhouse aphids, *A. gossypii* is an economically important aphid which attack many greenhouse plants including cucumber (Blackman and Eastop 2000).

Generalist predators, including *Orius* spp., and parasitoids are considered as important natural enemies of aphids. The generalist predators not
only feed on the aphids, but might also consume aphidophagous parasitoids at all stages of development (Traugott et al., 2012). The aim of the present study is to investigate interactions between two important biocontrol agents (O. albidipennis and A. colemani) for simultaneous release against A. gossypii in greenhouse cucumber. In addition, production of volatile infochemicals by the infested host plants or interspecific competitors in response to each natural enemy will be evaluated in laboratory conditions.

Materials and Methods

Host plant
Cucumber (Cucumis sativus cv. superdaminos) seeds were sown in pots filled with a perlite-cocopeat mix (1: 1, v: v) moistened regularly with half-strength Hoagland nutrient solution. The plants were grown in cages, 0.6 × 0.6 × 2m, in a growth chamber with a photoperiod of 14:10h (light: dark), at 20 ± 5°C, and maximum photon flux density of 1000μmolm⁻²s⁻¹.

Insect cultures
Wingless females of A. gossypii were provided from an experimental colony at Insect Ecological Laboratory of Shahid Chamran University of Ahwaz, Khuzestan province, south west Iran. The aphids were released in the rearing cages, 1 × 1 × 0.6m, with the cucumber plants. The cages were kept inside an air conditioned room at a temperature of 25 ± 3°C, relative humidity of 65 ± 5%, with a photoperiod of 14: 10h (light: dark). After the colony establishment, the wingless female adults or 2nd instar nymphs from the colony were used in the trials or for A. colemani rearing, respectively.

Mummies of M. persicae Sulzer and A. gossypii (parasitized by A. colemani) were provided from Koppert BV, Netherlands. After emergence of the parasitoid adults, 100 adults were introduced to the insect rearing cages with cucumber plants infested by A. gossypii at ambient conditions earlier mentioned for aphids rearing.

Adults of the predatory bugs, O. albidipennis, were collected from unsprayed sunflower fields in Mollasani region, Khuzestan province, south west Iran. Female bugs were isolated in a Plexiglas cylinder (18cm high, 7.5cm diameter) covered with a fine gauze lid on the top and margin for ventilation. At least one male was selected from the offspring of each female bug and was identified using keys of Pericart (1972). The bugs were reared on eggs of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) while date palm pollen was used as daily diet and bean pod as oviposition substrate at 25 ± 1°C, 60 ± 5%RH, and 16: 8h (light: dark) in an incubator. The Plexiglas cylinders were lined with crumpled wipe papers to provide a hiding place to rest and reduce cannibalism.

Experimental design
Prey preference trials
Experiments were performed at 25 ± 1°C, 60 ± 5% RH within a photoperiod of 16: 8h (light: dark) in an incubator. Parasitized and non-parasitized female adults of A. gossypii were used as prey of O. albidipennis. For this purpose, five females of A. colemani (3-4 days-old) were introduced into a standard 10cm plastic Petri dish that contained 20 wingless aphids which located upside a wet filter paper. To facilitate ventilation, a hole was made on top of the dishes (2.5cm diameter) and covered with fine net. After 8h, the parasitic wasps were removed from the Petri dishes. The parasitized aphids were used in the prey preference experiments 3 days post removal of parasitic wasp.

The experimental arena included the Petri dishes (with characteristics mentioned above) that comprised a cucumber leaf disk placed upside down on a 20ml layer of agar (5%) (Montserrat et al., 2000). Based on preliminary tests, densities of 5 or 10 parasitized aphids and 5 or 10 non-parasitized aphids per arena were used in the trials. To identify parasitized from non-parasitized aphids, one antenna of parasitized aphid was separated by fine pincet. Adult of the predatory bug (2-4 days old) was introduced to the experimental arena. Experiments were performed in a completely randomized design with 10 replications. After 2h, the predator was removed.
and the numbers of killed preys were recorded separately.

Olfactory trials
A Y-shaped olfactometer device was applied in the trials. Various parts of the device are shown in Figure 1. A leaf of cucumber plants was infested by adults of *A. gossypii* in a clips cage (5cm diameter). After 24h, another leaf from the plant was picked and placed in chamber 2. The leaf was washed by distilled water before use. Another cucumber leaf from plant without previous infestation was placed in chamber 3. Air flow (3.5lit/sec.) was passed across chambers 2 and 3 and reached location 1. A female wasp (2-4 days old and starved for 8h) was introduced to location 1. In another trial, a female predatory bug (3-4 days old and starved for 8h) was released in location 1.

After 10 min, location of the parasitic wasp or predatory bug in chamber 2 was recorded. If the wasp or bug did not move, and location 2 or 3 were not selected by the natural enemies, the trial was canceled and repeated again.

To investigate the production of volatile infochemicals by the intraguild competitors, a cucumber leaf with five wingless female aphids + one female predatory bug were placed in chamber 1 and five wingless female aphids were placed alone in chamber 2. Then a female parasitic wasp (2-4 days old) was introduced to location 1. In another scenario, five female aphids + a female parasitoid and five female aphids were placed alone in chambers 2 and 3, respectively. The location of the wasp or bug was determined after 10min.

All olfactory experiments were conducted in an incubator at 25 ± 2 °C, 60 ± 5% RH and a photoperiod of 16:8h (light: dark). Each trial was repeated for 20 times based on a completely randomized design.

Figure 1 Schematic figure of Y-shaped olfactometry device (1. Common entrance tube, 2 and 3. Sample chamber, 4. Connective tube, 5. Electric engine to create airflow).

Data analyses
Manly’s α index was used to evaluate prey preference (Manly, 1974; Chesson, 1984):

\[
\alpha = \frac{\ln \left(\frac{n_{w,i} - r_i}{n_{w,0}} \right)}{\sum_{j=1}^{m} \ln \left(\frac{n_{w,j} - r_j}{n_{w,j,0}} \right)}, i = 1,...,m
\]

Where \(\alpha \) = Manly’s α index for prey type, \(n_{w,i} \) is initial number of prey items of type \(i \), \(r_i \) is the number of prey items of type \(i \) consumed by the predator, \(n_{w,j,0} \) is initial number of prey items of type \(j \), \(r_j \) is the number of prey items of type \(j \) consumed by the predator and \(m \) is the number of prey types in the experiment. The α index give values between zero and one, and the number of the different prey types is always summed to be one and in several
experiments, all individuals of both prey species were consumed. To calculate Manly’s α index in these cases, the formula was modified by the addition of one individual prey of the completely depleted prey type to corresponding \(n_i \) and \(n_j \) in the above equation. This correction is based on the assumption that if another individual of the prey in question is present, it would survive. The corresponding estimate of \(\alpha_i \) is slightly conservative (Klecka, 2010).

One sample t-test was used to compare Manly’s \(\alpha \) index mean of each sample with 0.5 in prey preference trials. In addition, chi-square test was used to analyze olfactory trials. All statistical analyses were performed using SPSS statistical analysis package (SPSS, 1993).

Results

Prey preference experiments

Manly’s \(\alpha \) index of \(O. albidipennis \) preference was calculated between parasitized and non-parasitized aphids at 5 and 10 densities for each prey (Table 1).

Results show that Manly’s \(\alpha \) index of the predatory bug was not significantly different when fed on parasitized and non-parasitized aphids at different densities. Therefore, \(O. albidipennis \) has no obvious preference for either of the two preys.

Olfactory experiments

Synomone production studies

Responses of \(O. albidipennis \) and \(A. colemani \) female adults to volatile cues which originated from leaves of plants previously infested (IP) and not infested (NIP) by \(A. gossypii \) are presented in Table 2.

Results indicated that adults of \(O. albidipennis \) were significantly attracted to leaf of IP in comparison with NIP. Same behavior was observed for female adults of \(A. colemani \) in the olfactometry tests.

Inter-specific competition

Results of olfactometry trials for indicating IC between \(O. albidipennis \) and \(A. colemani \) are shown in Table 3.

Table 1 Manly’s \(\alpha \) indices of \(Orius albidipennis \) for the parasitized and unparasitized \(Aphis gossypii \).

<table>
<thead>
<tr>
<th>Number of Parasitized: Unparasitized</th>
<th>Unparasitized aphid</th>
<th>Parasitized aphid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maly's (\alpha) index</td>
<td>(t_{(df=8)})</td>
</tr>
<tr>
<td>5:5</td>
<td>0.533 ± 0.088</td>
<td>0.379</td>
</tr>
<tr>
<td>10:10</td>
<td>0.504 ± 0.054</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Table 2 Responding of \(Aphidius colemani \) and \(Orius albidipennis \) adults to cucumber plant with previous infestation (IP) and no infestation (NIP) by \(Aphis gossypii \).

<table>
<thead>
<tr>
<th>Species</th>
<th>Volatile cue sources</th>
<th>Total no.</th>
<th>Number of response</th>
<th>Number of no response</th>
<th>(\chi^2)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP/NIP</td>
<td></td>
<td>IP</td>
<td>NIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A. colemani)</td>
<td>IP/NIP</td>
<td>100</td>
<td>63</td>
<td>31</td>
<td>6</td>
<td>10.8</td>
</tr>
<tr>
<td>(O. albidipennis)</td>
<td>IP/NIP</td>
<td>100</td>
<td>67</td>
<td>29</td>
<td>4</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Table 3 Response and non-response of \(Aphidius colemani \) and \(Orius albidipennis \) adults to volatile cues from the aphid + intraguild competitor (IC) and the \(Aphis gossypii \) only.

<table>
<thead>
<tr>
<th>Species</th>
<th>Volatile cue sources</th>
<th>Total no.</th>
<th>Number of response</th>
<th>Number of no response</th>
<th>(\chi^2)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aphid + IC/aphids</td>
<td>100</td>
<td>38</td>
<td>58</td>
<td>4</td>
<td>4.16</td>
</tr>
<tr>
<td>(A. colemani)</td>
<td>Aphid + IC/aphids</td>
<td>100</td>
<td>37</td>
<td>60</td>
<td>3</td>
<td>5.45</td>
</tr>
</tbody>
</table>
Results indicated that both the wasps and bugs significantly avoided the chamber where the competitors were present which is associated with aphid patch. It seems that the *O. albidipennis* and *A. colemani* can recognize volatile odor of their intraguild competitors and avoid the IC when they had another choice.

Discussion

The predatory bug, *O. albidipennis*, did not exhibit any preference between parasitized and unparasitized adults of *A. gossypii*. Insect pest predators may prey unparasitized pests or pests which are parasitized and contain the immature stage of endoparasitoids, a form of IGP. Therefore, the biological control of the pest can either be enhanced or disrupted by introducing a predator species to an existing host-parasitoid system. When the predator exhibits a relative preference to unparasitized pest, it can be expected to improve control of the pest even if it produces high levels of IGP. In contrast, if the predator shows significant preference for parasitized pest, the biological control by the parasitoid can be disrupted (Colfer and Rosenheim 2001). Therefore, predator preference for hosts (unparasitized vs. parasitized) may be a key factor in determining the net effect of predation in simultaneous release of a generalist predator and a specialist parasitoid to control a pest (Erbilgin et al., 2004). Various findings were obtained by researchers when the preference of a generalist predator was investigated between parasitized and unparasitized preys by specialist parasitoids. For instance, three predators of *B. tabaci* nymphs, *Geocoris punctipes* Say, *Orius insidiosus* Say, and *Hippodamia convergens* Guérin-Méneville, exhibited a significant preference for parasitized nymphs by *Eretmocerus* sp. nr. *emiratus* (Hym., Aphelinidae) compared with unparasitized nymphs (Naranjo, 2007). Moreover, adults and 5th instar nymphs of *O. majusculus* exhibited significant preference for parasitized over unparasitized nymphs of *B. tabaci* by *E. formosa* (Sohrabi et al., 2012).

In contrast, adults of *C. septempunctat* and larvae of *Episyrphys balteatus* De Geer (Dip., Syrphidae) showed significant preference to unparasitized nymphs of *A. fabae* in comparison to parasitized nymphs by *L. fabarum* (Meyhofer and Klug 2002). Also, Takizawa et al. (2000) demonstrated that the larvae of aphidphagous ladybirds (*C. septempunctat*, *Harmania axyridis* Pallas and *Propylea japonica* Thunberg) had significant tendency to feed on unparasitized aphids compared with mummies of *Aphis craccivora* Koch which contained larvae of *A. colemani*. *H. axyridis* showed significant preference for unparasitized nymphs of *B. tabaci* in comparison with whitefly nymphs parasitized by *E. formosa* and *E. sophia* Girault and Dodd (Tan et al., 2016). The tendency of generalist predator to feed on the pest's mummies or unparasitized preys may be attributed to the effect of the preys on performance of the predators. For instance, Takizawa et al. (2000) documented that the coccinellid larvae exhibits different survival, developmental time and body weight when reared with parasitized or unparasitized aphids by *A. colemani*. In addition, the aphids paralyzed by the parasitic wasp result in decrease of its defensive behavior, therefore, it can be a crucial reason of more attack preference of the predators.

Similar to our findings, no significant preference was observed between parasitized and unparasitized eggs of *T. absoluta* (parasitized by *T. achaeae*) by *M. pygmeus* (Chailleux et al., 2013).

Ikegawa et al. (2015) stated that types and combinations of behaviour of prey and predators may greatly affect qualitative outcomes of biological control by multiple natural enemies. Therefore, it is expected that different results were observed for different pest-parasitoid-predator complexes.

It has been proved that adults of both natural enemies: *O. albidipennis* and *A. colemani*, could recognize volatile cues of infested cucumber plant by the aphids. The cues are probably produced systemically. Many host plants release volatile compound when infested
by herbivorous insects. The compounds are used as cues by predators or parasitoids foraging for their preys or hosts, respectively (Neveu et al., 2002). The attractive volatiles may be emitted only by infested parts of the host plant or systemically released by uninfested parts of the infested host plant, which can probably enhance the detectability of the signal (Dicke et al., 1990; Neveu 2002).

The host-derived cues have been shown to guide female parasitoids to locate and evaluate host patches before oviposition. For instance, Neveu et al. (2002) demonstrated that Brassica campestris L. whose roots are attacked by Delia radicum L. larvae, emits volatile cues attracting Trybiographa rapae Westwood (Hymenoptera: Figitidae). In addition, the infochemicals were detected in cereals that were attacked by Sitobion avenae Fabricius. The infochemicals guided Aphidius rhopalosiphi De Stepani-Perez (Hym., Braconidae) to the infested plants in olfactometry tests (Micha et al. 2000). Sassu et al. (2007) showed that Aphid-infested tomatoes (by Macrosiphum euphorbiae Thomas) were significantly more attractive towards Aphidius ervi Holiday (Hym., Braconidae) than undamaged plants and aphids themselves. The authors distinguished 8 compounds, a-pinene, (Z)-3-hexen-1-ol, a-phellandrene, limonene, (E)-b-ocimene, p-cymene, methyl salicylate, (E)-b-caryophyllene, which were released from the infested plants. The synthetic standard of the compound significantly affected the behavior of the parasitic wasp.

The volatiles released from several aphid and host plant species, alone or in association, were studied for their infochemical role in prey location by the generalist predators. For example, it is documented that Vicia fabae L., Brassica napus L. and Sinapis alba L. are infested by some aphid species, viz M. persicae, Acyrthosiphon pismum Harris and Brevicoryne brassicae L., emit volatile synomone, (E)-b-Farnesene, which attract Adalia bipunctata L. (Col., Coccinellidae) larvae and adults (Francis et al., 2004). Soybean plants infested by A. glycines released volatile cues composed of methyl salicylate, (D)-limonene and (E, E)-a-farnesene which affected the behavior of C. septempunctata, Chrysopa carnea Stephens (Neu., Chrysopidae) and syrphid flies. However, the behavioral effect was not observed in H. axyridis (Zhu and Park, 2005). Tan and Liu (2014) demonstrated that tomatoes infested by M. persicae distributed attractive volatile cues which stimulate three predator species; C. septempunctata, P. japonica (Col., Coccinellidae), and O. sauteri Poppius (Het., Anthocoridae), two whitefly parasitoid species (E. formosa and E. sophia Girault and Dodd) (Hym., Aphelinidae), and one aphid parasitoid species Aphidius gifuensis Ashmead (Hym., Aphidiidae).

Glinwood et al. (2011) demonstrated that predatory coccinellids can learn to associate the odor of aphid-infested plants with the presence of prey, and this olfactory learning ability is sensitive enough to discriminate variability between different genotypes of the same plant.

Our findings showed that both A. colemani and O. albidipennis avoided odors which indicated the presence of another intraguild competitor. It seemed that the natural enemies use the cues for reduction of intraguild competition between each other. Cotes et al. (2015) demonstrated that parasitoids of herbivorous insects utilize volatiles to evaluate predator-derived infochemicals to reduce predation risks. Our findings are in line with the results of Gnanvossou et al. (2003) who demonstrated that phytoseiid mite, Typhlodromalus manihoi Moraes, T. aripo DeLeon and Euseius fustis Pritchard and Baker, avoided patches of Mononychellus tanajoa Bondar inhabited by the other heterospecifics or by conspecifics when tested against a patch without predators. Same results were reported for Neoseiulus californicus McGregor and Phytoseiulus cucumeris Athias-Henriot (Cakmak et al. 2006).

In conclusion, in this study, it was proved that O. albidipennis and A. colemani have some valuable characteristics for control of A. gossypii in greenhouse cucumber e.g. there is no preference of the predatory bugs to the aphid mummies and systemic production of
synomone by the host plant for attraction of the natural enemies to infested plants. Although these characteristics make the natural enemies good biocontrol agents against *A. gossypii* on cucumber, especially in greenhouses; avoidance of the natural enemies from each other causes simultaneous release of the predator and parasitic wasp unsuitable for biological control of aphids in greenhouse or field. Results of the study can be applied in biocontrol program of *A. gossypii* on cucumber.

Acknowledgements

The research was supported by Agricultural Sciences and Natural Resources University of Khuzestan [grant number 9328407].

References

Glinwood, R., Ahmed, E., Qvarfordt, E. and Ninkovic, V. 2011. Olfactory learning of
Infochemical-mediated intraguild interactions among three predatory mites on
Adaptive defense of pests and switching predation can improve biological control by
Klecka, K. 2010. Predation by aquatic insects: species traits and habitat structure mediate
predator–prey interactions. MSc thesis, in English. University of South Bohemia,
'České Bud’ejovice, Czech Republic.
Manly, B. 1974. A model for certain types of
predation on the aphid parasitoid Lysiphlebus fabarum
(Heidus): mortality risks and behavioral decisions made under the
threats of predation. Biological Control, 25
(3): 239-248.
Meyling, N.V., Enkegaard, A. and Brodesgaard,
H. 2004. Intraguild Predation by Anthocoris
nemorum (Heteroptera: Anthocoridae) on
the Aphid Parasitoid Aphidius colemani
(Hymenoptera: Braconidae). Biocontrol
Science and Technology, 14 (6): 627-630.
Micha, S. G., Kistenmacher, S., Molck, G. and
Wyss, U. 2000. Tritrophic interactions
between cereals, aphids and parasitoid: Discrimination of different plant-host complexes by Aphidius rhopalosiphi
(Hymenoptera: Aphidiidae). European
Journal of Entomology, 97: 539-543.
response of the anthocorid predatory bug Orius sauteri to thrips-infested eggplants.
Entomologia Experimentalis et Applicata
Montserrat, M., Albajes, R. and Castañé, C.
2000. Functional response of four heteropteran predators preying on greenhouse
whitefly (Homoptera: Aleyrodidae) and western flower thrips (Thysanoptera:
Thripidae). Environmental Entomology:
29:1075-1082.
Naranjo, S. E. 2007. Intraguild predation on
Eretmocerus sp. nr. emiratus, a parasitoid of
Bemisia tabaci, by three generalist predators
with implications for estimating the level
and impact of parasitism. Biocontrol Science
and Technology, 17 (5/6), 605-622.
Neveu, N., Grandgirard, J., Nenon, J. P. and
Cortesero, A. M. 2002. Systemic release of
herbivore-induced plant volatiles by turnips
infested by concealed root-feeding larvae
Delia radicum. Journal of Chemical Ecology
28 (9): 1717-1732.
Ngi-Song, A. J., Overholt, W. A., Njagi, P. G.
N., Dicke, M., Ayertey J. N. and Lwande W.
1996. Volatile infochemicals used in host
and host habitat location by Cotesia flavipes
Cameron and Cotesia sesamiae (Cameron)
(Hymenoptera: Braconidae), larval
parasitoids of stem borers on graminaceae.
Orr, D. 2009. Biological Control and Integrated
Pest Management. In: Peshin, R and
Dhawan, A. K. (Eds). Integrated Pest
Management: Innovation-Development
Pedigo, L. P. 2002. Entomology and pest
management. Iowa University press, USA.
Péricart, J. 1972. Hémiptères Anthocoridae,
Cimicidae et Microphysidae de l'ouest-
paléarctique. Fauna de l'Europe et du Bassin
Rajabpour, A., Seraj, A. A., Allahyari, H. and
Shishebor, P. 2011. Evaluation of Orius
laevigatus Fiber (Heteroptera: Anthocoridae)
for biological control of Thrips tabaci
Lindeman (Thysanoptera: Thripidae) on
greenhouse cucumber in South of Iran. Asia
Reitz, S. R., Funderburk, J. E. and Waring, S.
M. 2006. Differential predation by the
generalist predator Orius insidiosus on
congeneric species of thrips that vary in size and behaviour. Entomologia Experimentalis et Applicata, 119: 179-188.

برهم کنش بین گونه‌ای روی خیار گلخانه‌ای

Aphidius colemani و Orius albidipennis (Hymenoptera: Braconidae) برای کنترل روی خیار گلخانه‌ای Aphis gossypii مهار عطاضه‌اند، علیه نرم‌پوسته‌ای و آری راشفی.

چکیده: شیت جالیز برهم کنش بین گونه‌ای روی خیار گلخانه‌ای Aphis gossypii Glover (Hemiptera: Aphididae) و پژوهشی در شرایط گلخانه‌ای به‌حساب می‌آید کارایی رهاسازی هیپرژان شکارک‌گر عمومی‌خوراف Aphidius colemani Veireck (Hemiptera: Anthocoridae) و زنبق پارازیت‌پردازی خاص‌پیش Orius albidipennis Reuter (Hemiptera: Anthocoridae) به‌منظور بررسی و توجیه برای کنترل آفتاب گلخانه‌ای Aphis gossypii (Hemiptera: Aphididae) در کم‌کاری با رهاسازی، مناسب‌نموده شد. در این مطالعه، برای کنترل گلخانه‌ای A. gossypii، هیپرژان‌های شیمیایی شناسایی شدند که با شکارک‌گر Orius albidipennis، موکم شدیدی که به‌صورت تکراری و به بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این نرمال‌تکرار، که بیشتر درصدی از تعداد نازک‌پوشی درون گلخانه‌ای است توانسته این کنش بین گونه‌ای رهاسازی اعمال کند. این کنش جلوگیری کرد از تعداد مسئول این

واژگان کلیدی: سن‌های شکارگر، زنبق پارازیت‌پردازی، رهاسازی هیپرژان، بیمارسی‌های شیمیایی، بیوکنترل شیمیایی