A Study of Genetic Structure of *Rutilus frisii kutum* in Anzali Lagoon, Using Microsatellite Markers

S. Rezvani Gilkolaei¹, S. L. Kavan², and R. Safari³*

ABSTRACT

*Kutum (*Rutilus frisii kutum*) is regarded as one of the valuable aquatic species in Southern Caspian Sea. Previous reports have indicated that there are two different forms of this fish in the Caspian Sea, the spring-run and the autumn-run. Despite high importance of availability of knowledge around the subject, there is yet no genetic study carried out on the fish’s population structure. A number of nine microsatellite loci were employed in the present study to investigate the genetic variation and differentiation between spring- and autumn-run of the species in Anzali Lagoon. For the purpose, genomic DNA from 105 specimens from spring- and autumn-run kutum from Anzali Lagoon and as well from Khoshkrud spring-run fish were extracted, and PCR amplification performed. A total of 149 alleles were detected at the 9 loci across the 3 populations (Anzali spring- and autumn-runs as well as Khoshkrud spring-run). Khoshkrud population exhibited a lower allelic and genetic variation \((A= 5, H_o = 0.406\) and \(H_e = 0.612\)) than the populations at Anzali Lagoon, and in spite of the higher number of alleles per locus (5.8) as well as higher observed heterozygosities (0.606) in the autumn-run in comparison with the spring-run (5.7, 0.571) in Anzali Lagoon, the differences weren’t found as significant \((P \geq 0.05)\). Both \(F_{st} \) value and significant deviation from Hardy–Weinberg Equilibrium (HWE) in all the cases \((9 \text{ loci} \times 3 \text{ populations})\) indicated a deficit in heterozygosity. The highest population differentiation was found between Anzali spring-run and Khoshkrud run \((F_{st} = 0.119, P \leq 0.01)\) and the lowest \((F_{st} = 0.07, P \leq 0.01)\) between Anzali spring- run vs. autumn-run. The highest genetic distance \((D = 0.337)\) was observed between Anzali autumn-run and Khoshkrud whereas it was found to be the lowest \((D = 0.25)\) between the spring- and the autumn-runs in Anzali. The obtained data suggested that the spring and autumn-runs of kutum in Anzali Lagoon should be considered in the studies and enhancement programmes of this species in the Caspian sea.

Keywords: Caspian Sea kutum, Genetic structure, Heterozygosity, Microsatellite.

INTRODUCTION

Rutilus frisii kutum (Kamensky, 1901), considered as an economically high value species, are mainly distributed along the south and southwest coast of the Caspian Sea from Atrek river located in the Caucasus region (Western coasts of the central Caspian region) into the southern coasts of Turkmenistan (Valipour and Khanipour, 2008). Nearly 60% of catch of bony fish in the southern part of Caspian Sea goes to this species. The catch was over 17,000 tons in 2008 (Abdolmaleki and Ghaninezhad, 2008). Today, Anzali Lagoon in Iran and Ghazel Aghaj Lagoon in Azerbaijan, considered as the main spawning grounds for kutum (Emadi, 1979) in the past have.

¹ Iranian Fisheries Research Organization, Tehran, Islamic Republic of Iran.
² Department of Biology, Faculty of Science, Savadkoh Branch, Islamic Azad University, Savadkoh, Islamic Republic of Iran.
³ Agricultural Sciences and Natural Resources University of Gourgan, Department of Fisheries, Gourgan, Islamic Republic of Iran.
* Corresponding author, e-mail: roghi_safari@yahoo.com

327
lost their significance and are no more able to well support kutum spawning (Valipour and Khanipour, 2008). Also, only a few rivers including Lemir, Khoshkrud, Sefidrud, Shirud are used as the main spawning grounds for the spring migration and for the artificial breeding of this species in the Iranian Coast of the Caspian Sea. Kavan et al. (2009) listed overfishing, illegal catch, water pollution along with the deterioration of habitats, and lack of natural spawning grounds as important factors in the decline of this species in Anzali Lagoon and in rivers in the southern shores of the Caspian Sea. Temperature and probably river flow are the factors determining the entrance of the fish into the rivers in the course of spawning migration. This is considered as the main migration, but there also exists a second, a much weaker run, which has been observed during the autumn (Razavi Sayad, 1995). Molecular markers provide a good estimate of the genetic diversity, since they are almost unlimited in number and are not influenced by the environment. Various such DNA markers as RFLP, AFLP, RAPD and microsatellites have been developed which can be employed either separately or in combination, to evaluate genetic diversity (Naghavi et al., 2010). Microsatellites are highly divers nuclear genetic markers, which are inherited co-dominantly in a Mendelian inheritance (Liu and Cordes, 2004). Microsatellites have been found suitable for a variety of applications in fisheries and aquaculture research, particularly where genetic differentiation within and among populations may be limited. Potential applications in aquaculture include monitoring change in genetic variation as a consequence of different breeding strategies, the investigation of interactions between wild and cultured populations, parentage assignment and estimation of relatedness between potential breeding pairs (Cross et al., 2005). The high level of polymorphism, relatively small size and rapid detection protocols make them especially suitable for stock identification in species previously exhibiting low levels of detectable variation, using allozymes or mtDNA (Bentzen et al., 1991).

There are several reports, suggesting differentiations among fish of one species or population, according to their migratory behavior, viz. those which enter a location in different times, and at different ages of migration, those which enter sea after their first year of life and as well, those that spend two years in freshwater (Razavi Sayad, 1995; Riazi, 1996). Holcik (1995) stated that Iranian young from the Anzali Lagoon never entered the Sea but remained in fresh or brackish water for 1-2 years. Riazi (1996) reported that this species migrates into the Siah-Keshim, a protected region of the Anzali Lagoon.

Several studies have been made regarding the genetic build up of Rutilus frisii kutum in the rivers running along the Iranian coast of the Caspian Sea (Kavan et al., 2009; Abdolhay, 2010, Rezvani Gilkolahi et al., 2010), but there are only a limited number of reports addressing the different forms of this species in the Caspian Sea and Anzali Lagoon. Reports by fishermen recount that two spawning migrations (spring and autumn populations), exist into Anzali Lagoon. Valipour and Khanipour (2008) reported two forms or stocks of this species in the Iranian waters of the Caspian Sea because of two spawning migrations, spring- and autumn-runs. Electrophoretic studies of blood proteins have revealed three stocks (Shilat, 1996). Despite the capability of molecular markers and the high importance of an identification of different forms (populations) of this economically important species for Fisheries Organization, yet there is no substantial study available on the subject. So, the aim of this study was to obtain information about genetic variation and differentiation of Rutilus frisii kutum in Anzali Lagoon spring and autumn runs to be employed in the future enhancement programmes of this species in the Caspian Sea.
MATERIALS AND METHODS

Fish Sampling and DNA Extraction

Samplings were made from Anzali Lagoon (latitude: 37° 26' 46.63"; altitude: 49° 22' 23.02") in spring and autumn 2006 and as well from Khoshkrud (latitude: 36° 49' 26.35"; altitude: 53° 45' 45.32") in spring (Figure 1). Khoshkrud choosing was to better elaborate the differentiations. Fin tissue samples were prepared from 35 fish in each time of sampling from Anzali and Koshkrud, then stored in 96% ethanol for subsequent DNA extraction and amplification. Genomic DNA was extracted from pieces of fin clips using the phenol-chloroform procedure described by Hillis and Moritz (1990). The quality and concentration of DNA from samples were assessed through 1% agarose gel electrophoresis. The samples were then stored at -20°C until use.

PCR Amplifications and Electrophoresis

PCR amplifications were done using nine microsatellite loci analyzed: Ca1, Ca2, Ca3, Ca4 (Dimsoski et al., 2000), Lco1, Lco2, Lco3, Lco4 (Turner et al., 2004), and MFW2 (Crooijmans et al., 1997), with GeneBank Accession number are AF277573, AF277574, AF277575, AF277576, AY318777, AY318778, AY318779, AY318780 and EF144125 respectively. The Polymerase Chain Reaction (PCR) conditions, especially the annealing temperatures, were optimized for the 9 microsatellite primers as necessary to produce amplification products. Annealing temperatures were 55°C for Ca1, 58°C for Ca2 and Ca3, and 61°C for Ca4, 60°C for Lco1, 62°C for Lco2, 53°C for Lco3, 57°C for Lco4, and 66°C for MFW2. Amplification was performed in PCR system (Gradient Eppendorf) using a 25 µl total volume containing 5 µl of 10X reaction buffer, dNTPs 10 mM, MgCl2 50 mM, primer 20 pmol of each (Forward and Reverse) Table1, genomic DNA 100ng and 1.5-2 unit of Taq polymerase. Initial denaturation was achieved at 94°C for 3 min followed by 30 cycles of denaturation in 30 seconds at 94°C, 30 seconds at the respective annealing temperatures, and extension to 72°C for 1 minute. The final step was extended to 5 minutes at 72°C. PCR products were separated using 8% polyacrylamide gels stained with silver nitrate.

Figure1. Map of sampling locations: Anzali Lagoon and Khoshkrud.
Table 1. Microsatellite Loci, GenBank acc no., Primer sequence, PCR product size (bp) and Polymorphism Information Content (PIC) of nine microsatellite markers from *Rutilus frisii kutum*.

<table>
<thead>
<tr>
<th>Microsatellite Loci</th>
<th>GenBank acc no.</th>
<th>Primer sequence</th>
<th>PCR product size range (bp)</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lco3</td>
<td>AY318779</td>
<td>F:GCAGGAGCGAAACCATAAAAT R:AAACAGGCAGGACACAAAGG</td>
<td>160-268</td>
<td>0.88</td>
</tr>
<tr>
<td>Lco1</td>
<td>AY318777</td>
<td>F:ACCGGACAAATTTGAGATTTTAT R:AGGGGGGCAGCATAAACAGGAGA</td>
<td>184-280</td>
<td>0.87</td>
</tr>
<tr>
<td>Lco2</td>
<td>AY318778</td>
<td>F:ATTTTTTAGGAGTTGATGTCAGCAT R:CAAGTGTGTGTGAGGAAGTGAG</td>
<td>132-196</td>
<td>0.756</td>
</tr>
<tr>
<td>Lco4</td>
<td>AY318780</td>
<td>F:ATCAGGTCAGGGGTGTCACG R:TAAGTATTTGAGTTGCTGTG</td>
<td>104-116</td>
<td>0.603</td>
</tr>
<tr>
<td>MFW2</td>
<td>EF144125</td>
<td>F:ACACCGGGCTACTGCGAGGAG R:GTGAGCTGGGAGGAGTTG</td>
<td>208-224</td>
<td>0.678</td>
</tr>
<tr>
<td>Ca1</td>
<td>AF277573</td>
<td>F:AAGACGATGCTGGATGTTTAC R:CAAGTGTGTCATTGAGGAAGTGAG</td>
<td>104-116</td>
<td>0.645</td>
</tr>
<tr>
<td>Ca2</td>
<td>AF277574</td>
<td>F:GGGACAGTGCTGAGGTGTTA C:CTATACGTATTCGCCGCAAGA</td>
<td>232-276</td>
<td>0.829</td>
</tr>
<tr>
<td>Ca3</td>
<td>AF277575</td>
<td>F:TTGGTGATGTCAGTTGATA R:GCATTGCCAAAAGTTACCC</td>
<td>136-164</td>
<td>0.714</td>
</tr>
<tr>
<td>Ca4</td>
<td>AF277576</td>
<td>F:GTGAAGCATGGCATAGCACA R:GAGCAGCGCAGCATACAC</td>
<td>138-160</td>
<td>0.643</td>
</tr>
</tbody>
</table>

Microsatellite Analysis

The presence of null alleles was tested using Microcheker version 2.2.3 (Van Oosterhout et al., 2004). The recorded microsatellite genotypes were applied as input data for the GeneAlex software version 6 package (Peakall and Smouse, 2006) to calculate allelic and genotypic frequencies, observed \((H_o) \) and \((H_e) \), expected heterozygosities and to test for deviations from Hardy-Weinberg Equilibrium (HWE). For each marker allelic variation was estimated by the polymorphism information content (PIC) value first described by Botstein et al. (1980) and modified by Anderson et al. (1993). Polymorphism Information Content was calculated as follows:

\[
\text{PIC}=1-(\sum_{i=1}^{n} p_i^2) - \sum_{i=1}^{k} \sum_{j=i+1}^{n} 2 p_i^2 p_j^2
\]

Where \(p_i \) and \(p_j \) are frequencies of \(i \) and \(j \) the alleles for a given microsatellite and \(k \) is the total number of alleles detected for that microsatellite. Genetic distance among populations (spring- and autumn-runs in Anzali Lagoon and Khoshkurd spring-run) was estimated from Nei standard genetic distance and genetic similarity index (Nei, 1972). Genetic differentiation among populations was evaluated through an assessment of pair wise estimates of \(F_{st} \) values \((F_{st}= H_{T}-\hat{H}_{e}/H_{T}) \). The number of migrants \(Nm \) \((Nm= [(1/ F_{st})-1]/4 \) Wright, 1969; Slatkin, 1987) was also calculated employing GeneAlex software (Peakall and Smouse, 2006).

RESULT

The displayed fragment in PCR presented different lengths in nine microsatellitic loci, the minimum fragment size being observed at Ca1 with 104-116 bp length and the maximum at Ca2 with 232-276 bp (Table 1). All the nine employed microsatellitic loci exhibited polymorphism (Table 1).

A total of 149 alleles were detected at the 9 loci and across 3 populations (Anzali spring-, Anzali autumn-runs and Khoshkurd spring-run) (Table 2) Polymorphism Information Content (PIC) of these nine microsatellite markers ranged 0.603-0.88 in this species.

The number of alleles ranged from 3 at Lco2, Lco4 and Ca4 in Khoshkurd to 13 at Lco3 in Anzali spring-run. Among the
Table 2. Variability of nine microsatellite loci in *Rutilus frisii kutum* populations from Anzali Lagoon and Khoshkrud (A, alleles number; H_o, observed heterozygosity; H_e, expected heterozygosity; P, P-values of x^2 tests for Hardy-Weinberg Equilibrium); F_is, Fixation index).

<table>
<thead>
<tr>
<th>Microsatellite Loci</th>
<th>Parameter</th>
<th>Anzali spring</th>
<th>Anzali autumn</th>
<th>Khoshkrud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lco3</td>
<td>A</td>
<td>13</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.457</td>
<td>0.429</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.87</td>
<td>0.858</td>
<td>0.827</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>0.471</td>
<td>0.5</td>
<td>0.724</td>
</tr>
<tr>
<td>Lco1</td>
<td>A</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.429</td>
<td>0.171</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.822</td>
<td>0.831</td>
<td>0.785</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>0.478</td>
<td>0.79</td>
<td>0.854</td>
</tr>
<tr>
<td>Lco2</td>
<td>A</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.714</td>
<td>0.857</td>
<td>0.714</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.779</td>
<td>0.749</td>
<td>0.561</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.038*</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>0.083</td>
<td>-0.145</td>
<td>-0.273</td>
</tr>
<tr>
<td>Lco4</td>
<td>A</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.371</td>
<td>0.857</td>
<td>0.314</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.622</td>
<td>0.646</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.003**</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>0.402</td>
<td>-0.32</td>
<td>0.114</td>
</tr>
<tr>
<td>MFW2</td>
<td>A</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.457</td>
<td>0.457</td>
<td>0.571</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.55</td>
<td>0.684</td>
<td>0.692</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>0.159</td>
<td>0.332</td>
<td>0.175</td>
</tr>
<tr>
<td>Ca1</td>
<td>A</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>1</td>
<td>0.971</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.59</td>
<td>0.693</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.001**</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>-0.698</td>
<td>-0.402</td>
<td>-0.576</td>
</tr>
<tr>
<td>Ca2</td>
<td>A</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.714</td>
<td>0.629</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.7</td>
<td>0.832</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>-0.024</td>
<td>0.244</td>
<td>0.616</td>
</tr>
<tr>
<td>Ca3</td>
<td>A</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.286</td>
<td>0.686</td>
<td>0.343</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.75</td>
<td>0.684</td>
<td>0.749</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.000***</td>
<td>0.001**</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>0.478</td>
<td>-0.003</td>
<td>0.542</td>
</tr>
<tr>
<td>Ca4</td>
<td>A</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>H_o</td>
<td>0.714</td>
<td>0.4</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.72</td>
<td>0.652</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.001***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td></td>
<td>F_is</td>
<td>0.01</td>
<td>0.386</td>
<td>0.466</td>
</tr>
</tbody>
</table>

Average number of alleles per locus: 5.7, 5.8, 5; Average H_o: 0.571, 0.606, 0.406; Average H_e: 0.687, 0.736, 0.612.
studied populations and, with a consideration of all the loci, Khoshkrud population revealed lower allelic and genetic variations \((A = 5, \text{Ho} = 0.406 \text{ and He} = 0.612)\) than the population of Anzali Lagoon. In spite of higher number of alleles per locus \((5.8)\) and observed heterozygosity \((0.606)\) in the autumn run in comparison with the spring run \((5.7, 0.571)\) in Anzali Lagoon, the differences between them weren’t found as significant \((P \geq 0.05)\) (Table 2).

Both \(F_{is}\) value and significant deviation from Hardy–Weinberg Equilibrium (HWE) in all the cases \((9 \text{ loci} \times 3 \text{ populations})\) indicated deficit in heterozygosity (Table 2). The population differentiation was found highest between Anzali spring-run and Khoshkrud \((F_{st} = 0.119, P \leq 0.01)\) while the lowest \((F_{st} = 0.07, P \leq 0.01)\) between Anzali spring and autumn-runs (Table 3). Principle Coordinates Analysis (PCA) (Figure 2) also, revealed the differences among studied populations. The estimated number of migrant \((N_m)\) between the spring and autumn runs in Anzali Lagoon across all the studied loci was the highest \((N_m = 3.23)\) while it was the lowest \((N_m = 1.85)\) between the spring run population in Anzali Lagoon and Khoshkrud (Table 3). Genetic distance \((D)\) and genetic similarity index \((I)\) among the three populations are presented in Table 4. The highest genetic distance \((D = 0.337)\) was found between Anzali autumn- run and Khoshkrud, while the lowest one \((D = 0.25)\) between the spring- and the autumn-runs in Anzali. Mantel Test indicated that the estimated standard genetic distance according to Nei (1972) is positively correlated with \(F_{st}\) \((Y = 0.3936x -0.0557, R^2 = 0.9747)\) (Figure 3).

DISCUSSION

Genetic diversity is important for ecological and evolutionary processes ranging from individual fitness to ecosystem function. Heterozygosity serves as an indicator of evolutionary potential and is important in determining population dynamics as well as population viability (Reed, 2009). The results of the study indicated that the average number of alleles per locus and the observed heterozygosity in Anzali lagoon autumn-run \((5.8 \text{ and } 0.606)\) and

Table 3. Multilocus \(N_m\) (above diagonal) and \(F_{st}\) values (below diagonal) between pairs of *Rutilus frisii kutum* populations across all loci.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Anzali Lagoon spring</th>
<th>Anzali Lagoon autumn</th>
<th>Khoshkrud River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzali Lagoon spring</td>
<td>****</td>
<td>3.32</td>
<td>1.85</td>
</tr>
<tr>
<td>Anzali Lagoon autumn</td>
<td>0.07*</td>
<td>****</td>
<td>1.95</td>
</tr>
<tr>
<td>Khoshkrud River</td>
<td>0.119*</td>
<td>0.114*</td>
<td>****</td>
</tr>
</tbody>
</table>

Statistically significant values are marked with asterisks. \(*P \leq 0.01\)

Table 4. Genetic distance \(D\) (above diagonal) and genetic similarity (below diagonal) between pairs of *Rutilus frisii kutum* Populations.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Anzali Lagoon spring</th>
<th>Anzali Lagoon autumn</th>
<th>Khoshkrud River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzali Lagoon spring</td>
<td>****</td>
<td>0.25</td>
<td>0.323</td>
</tr>
<tr>
<td>Anzali Lagoon autumn</td>
<td>0.779</td>
<td>****</td>
<td>0.337</td>
</tr>
<tr>
<td>Khoshkrud River</td>
<td>0.724</td>
<td>0.714</td>
<td>****</td>
</tr>
</tbody>
</table>
were higher than those in the spring-run (5.7 and 0.571 respectively), but the differences between the two weren’t found as significant, both being higher than Khoshkrud (5 and 0.4) and all being lower than those (\(A= 11.3, H= 0.68\)) reported by DeWoody and Avise (2000) for anadromous fish. Loss of genetic variation in hatchery stocks is a common phenomenon reported in many species \([Salmo trutta\) (Was and Wenne, 2002); \(Rutilus rutilus caspicus\) (Keyvanshokoh et al., 2007); \(Abramis brama\) (Ghasemi et al., 2007); \(Cyprinus carpio\) (Thai et al., 2007); \(Orechromis niloticus\) (Nyingi et al., 2009); \(Ctenopharyngodon idella\) (Liu et al., 2009)]. This is mainly due to a reduction in the effective population size (\(N_e\)), inbreeding or combinations of these events (Falconer, 1998). As natural spawning grounds of this species have been destroyed due to pollution and its stock being decreasing, annually, millions of fries (average weight 1 g) have been produced and released into the Caspian Sea by Iranian Fisheries Organization hatcheries (Kavan et al., 2009). This species is highly fecund (Absolute fecundity, on the average, is 74,774 eggs) (Valipour and Khanipour, 2008), and the tendency of keeping a small number of fish as broodstock to reduce the cost of production, coupled with mass spawning practiced by many hatcheries has promoted random genetic drift, resulting in reduction in genetic diversity in hatchery stocks. Higher number of alleles per locus and observed heterozygosity in Anzali lagoon autumn-run should be considered in restocking of this species in Caspian Sea.

Significant deviations from HWE were detected at all loci in all the populations \((P \leq 0.05)\). Several such possible alternative reasoning as null alleles, heterozygosity deficiency may explain these observations. Where heterozygosity deficiencies were detected, such deviations would generally indicate that such factors as non-random mating, reduction in effective breeding population or selection pressure at a specific locus are the causes for the observed instances (Garcia de Leon et al., 1997). By using Microchecker, null alleles were found in some loci. This would have been likely; primers had been designed for the other species and failed to amplify some alleles (produce nulls) in this species. Genetic structure of populations may vary considerably among species depending on the relative importance of drift, gene flow as well as selection (Slatkin, 1985) along with such long-term historical events, as postglacial recolonization from different glacial refuges (Taberlet et al., 1998). Pairwise genetic differentiation \((Fst)\) was employed to assess genetic differentiation, which is the acquisition of allele frequencies that differ among populations (Hartl and Clark 1997). \(Fst\) analysis revealed significant
genetic differentiation (P≤0.01) among the spring-run and the autumn’s, and both with Khoshkrud. PCA test also, verified differentiation among them. The population differentiation between Khoshkrud-Anzali spring run (0.119) and Khoshkrud-Anzali autumn’s (0.114) were considerable. This moderate genetic differentiation between Khoshkrud and Anzali (spring and autumn), despite low geographic distance could be indicative of the high conservation and permanence of Khoshkrud population. Khoshkrud is one of the rivers that is still used as the main spawning grounds for migration and it is usually utilized as the progeny origin of brood stock from that locality for restocking purposes in recent years, therefore, it appears that Khoshkrud population has conserved its stock, to some extent.

The estimated F_{st} between Anzali spring and autumn runs, in this survey, was about 0.07, which is lower than the F_{st} estimated (mean of 0.1) by reviewing 7 anadromous fish species (Ward et al. 1994). On the other hand, it is slightly higher than (0.05) that of Balloux and Lugon-Moulin (2002) and Tevfik Dorak, (2005) considered as a single population. Estimates of $Nm> 1$ suggest that gene flow among populations could be accounted for as one of the main factors in genetic diversity (Li et al., 2007). Estimated gene flows also indicate lower levels of migration between Khoshkrud and Anzali spring (1.85) and Khoshkrud and Anzali autumn (1.95) than between Anzali spring- and autumn-runs (3.32). The lower value of Nm again reflects the higher value of F_{st}.

Emadi (1979) pointed out that intensive sea fishing and fishing in rivers hindered spawning of the autumn form, and led to merely the spring form spawning. Reports of fishermen indicate that two spawning migrations (spring and autumn populations) into the Anzali Lagoon still exist. Razavi Sayad (1995) found three populations in Iran, one autumn and two spring populations. There may be three stocks based on electrophoretic studies of blood proteins associated with the two spawning migrations (Shilat, 1996). According to the catch records of the fishermen throughout the year, only about 1% of kutum enters the lagoon in autumn, and more than 98% in spring (Razavi Sayad, 1995). This could be attributed to use of spring run for restocking by Fisheries Organization.

The lowest genetic distance was observed between the spring-run and the autumn-run in Anzali, suggesting that they had originated from a common ancestor. The genetic distance between populations in this research (0.25-0.337) fall within the range of (0.03-0.61) for congeneric (Shaklee et al., 1982; Thorpe and Solé-Cava, 1994) species, suggesting their genetic divergence.

In conclusion, this study provides one with useful insight into the genetic variability and differentiation of *Rutilus frisii kutum* populations (forms) in the Caspian Sea and Anzali Lagoon, suggesting that there is need for development of management and conservation plans for different forms of this species in Anzali Lagoon and in Caspian Sea.

ACKNOWLEDGEMENTS

This work was funded by Iranian Fisheries Research Institute. Sincere gratitude is forwarded to personnel at the Ecology Research Institute of the Caspian Sea for their collaboration.

REFERENCES

مطالعه ساختار زننیکی ماهی سفید در تالاب انزلی با استفاده از روش میکروژناتایت

چکیده

ماهی سفید یکی از گونه‌های با ارزش سواحل جنوبی دریای خزر می‌باشد که در زمینه‌های گزارشات قبیلی حاکی از وجود دو فرم متفاوت این ماهی (بیشه و پاییزه) در دریای خزر است. در مطالعه حاضر، 9 لگوس میکروژناتایتی برای بررسی تنوع زننیکی و تفاوت‌های فرم‌های مختلف بیشه و پاییزه این ماهی در تالاب انزلی بکار برده شد. برای این منظور 105 نمونه ماهی سفید در بیشه و پاییز از تالاب انزلی و رودخانه خشکرود جمع آوری شدند. با استفاده از یکلمارش، این آزمایشات در این نمونه‌ها در سه گروه چهارده در جمعیت بیشترین بهره (A=5.5), در نسبت به نمونه‌های بیشه و پاییز تالاب انزلی (D=0.337) و تنوع زننیکی کمتری (A=5, Ho=0.606) اتفاق می‌افتد. در این نمونه، در تالاب انزلی نشان داد که تعداد لگوس و هتروژنوتایتی در نمونه‌های بیشه و پاییزه تالاب انزلی (A=5.7, Ho=0.606) (A=5.8, Ho=0.571) اختلاف معنی‌داری بین آنها مشاهده شد. دو شاخص Fst و انحراف از تعادل در همروصه‌ها به ارزیابی تاسم جمعیت حاکی از کمیته هتروژنوتایتی بود. تفاوت‌های زننیکی بین همه نمونه‌ها معنی دار دارد (P<0.05) و (P<0.01) و بیشترین تنوع زننیکی بین نمونه‌های بیشه و تالاب انزلی و خشکرود (D=0.25) مشاهده شد. بیشترین فاصله زننیکی بین نمونه‌های پاییز تالاب انزلی و خشکرود (D=0.337) و کمترین بین نمونه‌های بیشه و پاییزه در تالاب انزلی (D=0.01) مشاهده شد. در هم‌اکنون، این نشان می‌دهد که فرم‌های بیشه و پاییز تالاب انزلی یکدیگر در برنامه‌های باز سازی دخاب به این گونه در دریای خزر مورد توجه قرار گیرند.