Overexpression of Rice Phosphate Transporter Gene OsPT2 Enhances Tolerance to Low Phosphorus Stress in Soybean

G. H. Chen¹,2, W. Yan², S. P. Yang¹, A. Wang³, J. Y. Gai¹ and Y. L. Zhu¹,2*

ABSTRACT

Low phosphorous (P) availability in soils limits production of soybean [Glycine max (L.) Merr.] around the world. This study was conducted to determine whether exogenous expression of the rice (Oryza sativa L.) phosphates transporter gene OsPT2 would increase inorganic phosphates (Pi) acquisition and improve yield in transgenic soybean. Cotyledonary-node explants of the soybean were inoculated with the Agrobacterium tumefaciens strain EHA105 harboring the vector pCAMBIA3301-OsPT2, which contained OsPT2, gus and bar genes. Ten fertile T₀ transgenic plants were obtained and semi-quantitative RT-PCR of progenies demonstrated that OsPT2 gene was overexpressing in the T₂ generation. Three T₂ transgenic lines overexpressing OsPT2 were selected and subjected to testing for tolerance to low concentrations of Pi (low-Pi; 20 µM Pi) by hydroponic culture using modified Hoagland’s nutrient solution. The total P contents in the leaves, stems, roots, and seeds of the transgenic plants significantly increased under the concentrations of low-Pi and 1,000 µM Pi of standard Hoagland’s nutrient solution. Under low-Pi stress, the yields of the transgenic lines were significantly higher than those of the wild type. Taken together, our data suggest that the overexpression of OsPT2 in transgenic soybean lines improves Pi acquisition and seed yield, and OsPT2 may serve as one of the promising target genes that can be manipulated in crop improvement for minor use of Pi fertilizers.

Keywords: Glycine max, Transgenic plants.

INTRODUCTION

Soybean [Glycine max (L.) Merr.], one of the most widely grown leguminous crops, is one of the principal food sources for human and livestock (Herridge et al., 2008). Soybean oil is the most common vegetable oil and is considered as a promising biodiesel (Chapotin and Wolt, 2007). The global production of soybean has doubled over the past 20 years (http://faostat.fao.org), and reached 83.18 million metric tons in 2011 (http://soystats.com/2012/Default-frames.htm). Nonetheless, low phosphorus (P) availability in soils limits soybean production (Vance, 2001). To obtain maximal crop yields, nearly 30 million tons of P fertilizer are applied to agricultural fields each year, up to 80% of which is lost (López-Bucio et al., 2000). Phosphorous becomes immobile and unavailable for plant uptake (Qin et al., 2012), leading to accelerated soil degradation and environmental problems. Excessive application of phosphates to soils also wastes phosphorite resources, which may be depleted by the end of the 21st century (Hata et al., 2010).

¹National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China.
²College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China.
³Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.
*Corresponding author; e-mail: ylzhu@njau.edu.cn
Tropical, subtropical, and temperate regions are the main area for soybean production, however, these regions are low in P due to weathering, intensive erosion, and strong P fixation by free ion and aluminum oxides (Wang et al., 2009). Especially in the acid soils in southern parts of China, the concentrations of inorganic phosphates (Pi) are lower than 6 µM, and the rate of soil Pi diffusion is much lower than the rate of absorption by plant roots (Li et al., 2011; Vance et al., 2003). As a key element in metabolism and an essential building block of cell components (Rouached et al., 2010), P is considered to be the most important nutrient for soybean (Malik et al., 2006). Soybean plants require more P compared with other nutrients, due to the root nodules responsible for nitrogen fixation and the seeds containing more oil and proteins (Qin et al., 2012; Win et al., 2010). Lack of P in soybean can cause serious effects, one of which may prevent other nutrients from being absorbed by soybean plants (Win et al., 2010). In order to increase the yield and improve the nutritive quality of the soybean seed, enhancing the efficiency of Pi acquisition is necessary to achieve high yields of soybean seeds (Shah et al., 2001).

In the past decade, increasing attention has focused on the mechanisms involved in improving Pi utilization efficiency by introducing phosphate transporter genes, such as rice, wheat, and tobacco (Guo et al., 2013; Jia et al., 2011; Sun et al., 2012; Wu et al., 2013). However, very limited work has been done to improve Pi acquisition in soybean. In this study, we generated fertile T0 OsPT2 transgenic soybean plants and their progeny, and tested if ectopic expression of OsPT2 could confer soybean stable transformants (T2 transgenic lines) tolerance to low-Pi.

MATERIALS AND METHODS

Plant Material and Seed Germination

The soybean cultivar ‘Xinliaoxian’ (provided by Nanjing Luling Seed Company, Nanjing, China) was used as the experimental host, which was based on the GUS transient expression frequencies of sixteen soybean cultivars (Liu et al., 2014). Dry seeds were surface sterilized and germinated according to Liu et al. (2014).

Binary Vector and Agrobacterium Strain

The binary vector pCambia3301-35S (CAMBIA, Australia) was used for this study, which had been added the cauliflower mosaic virus (CaMV) 35S promoter and the nopaline synthase (NOS) terminator. To this vector, the ORF of OsPT2 (Accession number: AF536962), digested with the BamHI and SacI (Promega, USA), was inserted between the CaMV 35S promoter and the NOS terminator. The new construct, pCambia3301-OsPT2, was transferred into Agrobacterium tumefaciens strain EHA105 as described in our previous report (Liu et al., 2014).
Production of Transgenic Soybean Plants

Cotyledonary-node explants were prepared from 5-day-old seedlings. The procedure for the genetic transformation was based on the Agrobacterium-mediated method described by Liu et al. (2013, 2014). The transgenic T₀ plants were confirmed by PCR and southern blot. The T₁ and T₂ seeds harvested from the positive transgenic plants were germinated and identified by PCR and GUS assays. The positive transgenic plants of T₂ generation were used for the low-Pi tolerance evaluation.

GUS Assays and Leaf Painting

Various parts of transgenic plants and seedlings were collected and used for histochemical detection of gus expression (Liu et al., 2014). Leaf painting was performed to test herbicide tolerance in the transgenic plants according to Liu et al. (2014).

Molecular Analysis of Transformed Plants

The genomic DNAs of the transgenic and wild type (WT) plants were extracted, and the gus and bar genes were amplified (Liu et al., 2014). The amplification of OsPT2 was performed according to Ai et al. (2009). PCR reactions were conducted using a Thermal Cycler (TProfessional, Biometra, Germany).

To further characterize the copy number of the integrated foreign genes in the T₀ transgenic plants, southern blot analysis was performed using DIG High Prime DNA Labeling and Detection Starter Kit I (Roche Applied Science, Germany). The 944 bp gus gene was labeled with digoxigenin-dUTP and used as the probe for hybridization (Liu et al., 2013, 2014).

To evaluate the expression level of the OsPT2 gene in the T₂ transgenic plants, a semi-quantitative RT-PCR was performed according to Yannarelli et al. (2006). Total RNA was extracted and the OsPT2 gene was amplified by PCR using the special primers as described by Ai et al. (2009). The housekeeping gene TefS1 (Encoding the soybean elongation factor EF-1a: X56856) was used as a control. Images of ethidium bromide stained gels were captured and analyzed using Integrated Gel Imaging Systems (Gensens 1880, Shanghai Clinx Science Instruments, China). The ratio of OsPT2 mRNA to TefS1 mRNA was quantified.

Progeny Segregation Analysis

Transgenic plants were allowed to self-pollinate to produce subsequent generations of progeny. The progeny of four independent lines (12PT2-1, 12PT2-2, 12PT2-3, and 12PT2-4) were evaluated for the gus expression and tolerance to the herbicide by testing leaves of T₁ plants. The chi-square (χ²) analysis was performed to test the ratios 3:1 and 15:1 (GUS positive: GUS negative and herbicide tolerant: herbicide sensitive), where significance was determined for those values with a P-value greater than 0.05.

Pi Deficiency Treatment

To evaluate low-Pi tolerance under greenhouse conditions, three transgenic seedlings (10-day-old) from independent T₂ lines (12PT2-1, 12PT2-2, and 12PT2-4) and one WT seedling (10-day-old) were grown in modified Hoagland’s nutrient solution (substituting some of the NH₄H₂PO₄ with NH₄Cl until the final concentration of P was 20 µM; the other nutrients were as follows: 15 mM N, 6 mM K, 4 mM Ca, 2 mM Mg, 2 mM S, 0.98 mM Cl, 140 µM B, 36 µM Mn, 46 µM Zn, 100 µM Cu, 30 µM Fe, and 1 µM Mo; EC= 2.61 dS m⁻¹) and aerated continuously. The nutrient solution was replaced every 3 days, and the pH was
adjusted to 6.5. Ten plants of each T2 line were hydroponically grown as replications. The standard Hoagland’s nutrient solution (normal-Pi; 1,000 µM Pi) was used for the control. The environmental conditions in the greenhouse were artificially controlled as follows: day/night temperature at 28°C/20°C, light and dark periods of 12 hours each, with light from HPS lamps at a photosynthetic photon flux density (PPFD) of 600 µmol m⁻² s⁻¹, a relative humidity of 70–80%, and a CO₂ concentration of 400 µM.

Measurement of Growth Parameters and P Concentrations

Thirty days after hydroponic cultivation, five plants of each line were randomly subjected to growth parameter measurements, including plant height and root length. The plants were then harvested and the biomass of shoots and roots was determined according to Chen et al. (2011).

Inorganic phosphates and total P concentrations of plant tissues were determined according to Zhou et al. (2008). For Pi measurement, a frozen sample was homogenized in 1 mL 10% (w/v) of perchloric acid (PCA), and the homogenate was then diluted 10 times with 5% (w/v) PCA and placed on ice for 30 min. The supernatant was collected from the homogenate by centrifugation at 10,000xg for 10 minutes at 4°C, and used for Pi measurement via the molybdenum blue method. Inorganic phosphates concentration was calculated by normalization of fresh weight. Total P content was analyzed by the molybdenum blue method after digesting with H₂SO₄-H₂O₂ at 300°C, and normalized by dry weight.

Seed Yields of Plants

When the five remaining plants reached maturity at approximately 90 days after low-Pi treatment, the plants were harvested. The number of seeds per individual plant was counted, and the seeds were weighed.

Statistical Analysis

The data were subjected to normality test, analysis of variance (ANOVA), and levels of significance were determined by the least significant difference (LSD) test using SAS software (SAS Institute, Cary, NC, USA). Graphs were drawn using Origin 8.5 software (Microcal, USA).

RESULTS

Generation of Transgenic Soybean Plants

The plant binary vector pCAMBIA3301-OsPT2 was constructed. The schematic diagram of the T-DNA region is presented in Figure 1. The cotyledonal-node transformation method using bialaphos for the selection of the transformed shoots is illustrated in Figure 2. In three independent experiments, a total of 673 explants were

Figure 1. Schematic representation of the T-DNA region of pCAMBIA3301-OsPT2. The exogenous genes were driven by the CaMV 35S promoter. The T-DNA left border (LB) and right border (RB) and the positions of enzyme sites are indicated.
inoculated by *A. tumefaciens* and fourteen GUS positive shoots were obtained via the half-leaf GUS assay method (Table 1). After rooting, ten plantlets grew in pots in the greenhouse and matured. These ten putative transgenic plants were numbered 12PT2-1 to 12PT2-10. The transformation efficiency ranged from 1.43 to 1.64% with an average of 1.48% (Table 1).

Basta® Resistance and GUS Expression are Evident in Transgenic Plants

We examined the expression of *bar* in the T₀ transgenic plants. Painted with 0.5% Basta® solution for 7 days, the transgenic plants showed resistance to Basta® (Figure 2-I), while the WT plants exhibited necrosis (Figure 2-J). This result verified the functional expression of *bar* in the transgenic plants.

As shown in Figure 3, stable expression of *gus* gene was detected in various organs of T₀ transgenic plants, including stems, leaflets, flowers, and pods. In addition, the integrated *gus* gene was inherited by the progeny, as stable GUS expression was detected in germinating T₁ [Figure 3 (F and G)] and T₂ (Figure 3-H) seeds. Finally, fifty GUS positive T₁ transgenic plants of four lines (12PT2-1 to 12PT2-4) were obtained (Table 2), and twenty positive transgenic plants from each T₂ line of 12PT2-1, 12PT2-2, and 12PT2-4 were used for hydroponic cultivation.

Table 1. Transformation efficiency of soybean cv. ‘Xinliaoxian’ using the *Agrobacterium*-mediated cotyledonary-node method.

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>No. of explants infected (A)</th>
<th>No. of explants with resistant shoots</th>
<th>GUS<sup>a</sup> shoots<sup>b</sup> (B)</th>
<th>Early transformation efficiency (B/A, %)</th>
<th>Southern<sup>c</sup> plants<sup>b</sup> (C)</th>
<th>Final transformation efficiency (C/A, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>244</td>
<td>152</td>
<td>5</td>
<td>2.05</td>
<td>4</td>
<td>1.64</td>
</tr>
<tr>
<td>2</td>
<td>219</td>
<td>141</td>
<td>5</td>
<td>2.28</td>
<td>3</td>
<td>1.37</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
<td>139</td>
<td>4</td>
<td>1.90</td>
<td>3</td>
<td>1.43</td>
</tr>
</tbody>
</table>

^a GUS^a shoots were identified based on the half-leaf GUS assay method. ^b Southern^c plants were identified based on the analysis of T₀ plants exhibiting pod-setting.
Molecular Analyses of Transgenic Plants

We performed PCR analysis of the T₀ transgenic plants to confirm the integration of the exogenous genes into the genome (Figure 4). The expected 944 bp band (for gus, Figure 4A-a), 413 bp band (for bar, Figure 4A-b), and 1587 bp band (for OsPT2, Figure 4A-c) were detected in the soybean genome. Sixty T₁ transgenic plants of four lines (12PT2-1 to 12PT2-4; Table 2) were identified by PCR analysis, and expected bands were observed in fifty GUS positive plants. These PCR results confirmed that gus, bar, and OsPT2 were successfully introduced into the genomes of the transgenic plants.

To confirm the copy number of the exogenous genes in the transgenic soybean genome, we performed Southern blot analysis (Figure 4-B). Hybridization of the gus probe to total genomic DNA digested with EcoRI was used to identify DNA fragments unique to individual integration events. Analysis of genomic DNA from ten T₀ transgenic plants revealed at least one transgene-hybridizing DNA fragment per plant, with six plants harboring a single copy (Figure 4-B, Lanes 1, 2, 4, 8–10), two plants harboring two copies (Figure 4-B, Lanes 5 and 6), and the remaining two plants harboring three transgenic loci (Figure 4-B, Lanes 3 and 7).

Table 2. Segregation analysis of T₁ transgenic lines.

<table>
<thead>
<tr>
<th>T₀ line</th>
<th>No. of T₁ plants<sup>a</sup></th>
<th>Segregation ratio</th>
<th>χ² value</th>
<th>P-value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>12PT2-1</td>
<td>GUS<sup>+</sup> 12, GUS<sup>−</sup> 5, Bar<sup>+</sup> 12, Bar<sup>−</sup> 5</td>
<td>3:1</td>
<td>0.02</td>
<td>0.89</td>
</tr>
<tr>
<td>12PT2-2</td>
<td>GUS<sup>+</sup> 14, GUS<sup>−</sup> 3, Bar<sup>+</sup> 14, Bar<sup>−</sup> 3</td>
<td>3:1</td>
<td>0.18</td>
<td>0.67</td>
</tr>
<tr>
<td>12PT2-3</td>
<td>GUS<sup>+</sup> 13, GUS<sup>−</sup> 0, Bar<sup>+</sup> 13, Bar<sup>−</sup> 0</td>
<td>15:1</td>
<td>0.13</td>
<td>0.72</td>
</tr>
<tr>
<td>12PT2-4</td>
<td>GUS<sup>+</sup> 11, GUS<sup>−</sup> 2, Bar<sup>+</sup> 11, Bar<sup>−</sup> 2</td>
<td>3:1</td>
<td>0.23</td>
<td>0.63</td>
</tr>
</tbody>
</table>

^aData were based on the GUS histochemical assay for the gus gene and the Basta[®]-resistant analysis for the bar gene; ^bA single degree of freedom was used to obtain P-values. χ²_{0.05,1} = 3.84.
Rice Phosphate Transporter Gene OsPT2

Figure 4. Molecular analysis of transgenic plants. (A) PCR detection of transgenic soybean; (a) 944 bp fragment of the gus gene; (b) 413 bp fragment of the bar gene; (c) 1587 bp fragment of the OsPT2 gene; Lane M: Marker (DL 2000, TaKaRa); Lane P: Positive control (plasmid pCAMBIA3301-OsPT2); Lane N: Negative control (WT), Lanes 1–10: Independent T₀ transgenic plants from 12PT2-1 to 12PT2-10. (B) Southern blot of T₀ transgenic plants probed with the 944 bp gus gene probe; Lane P: Positive control (plasmid pCAMBIA3301-OsPT2; 200 pg); Lane N: Negative control (WT); Lanes 1–10: independent T₀ transgenic plants from 12PT2-1 to 12PT2-10; Molecular weights were estimated based on the DL 15,000 DNA Marker (TaKaRa). (C) RT-PCR analysis of OsPT2 expression in T₁ transgenic lines; the upper and lower panels indicate gene expressions in leaves and roots, respectively; TefS1 was used as an internal control; Lanes 1–3: OsPT2 T₁ transgenic lines 12PT2-1, 12PT2-2, and 12PT2-4, respectively; Lane WT: Wild-type. (D) Relative OsPT2 gene transcript expression compared to the housekeeping gene TefS1; values are the mean of five independent plants; bars indicate SD.

Lanes 3 and 7). No hybridization signal was observed in the WT sample (Figure 4-B, Lane N). These results indicated that the ten T₀ transgenic plants were derived from independent transformation events.

We detected the expression levels of OsPT2 in five plants from each T₂ line (including 12PT2-1, 12PT2-2 and 12PT2-4) and the WT by semi-quantitative RT-PCR (Figure 4-C). Using gene-specific primers, the OsPT2 transcripts were detectable in both shoots and roots. Transcript levels of OsPT2 were higher than those of the housekeeping gene TefS1 (Figure 4-C), which was uniformly expressed in all samples examined, suggesting that OsPT2 was overexpressed in all the three transgenic lines examined (Figure 4-D).

Phenotypic Analysis of T₁ Segregating Progenies

Segregation analyses of gus and bar genes were conducted on the progenies (T₁ lines) of four independent T₀ plants (12PT2-1, 12PT2-2, 12PT2-3, and 12PT2-4) (Table 2). The chi-
squared (χ^2) analysis indicated that three T_1 generations (12PT2-1, 12PT2-2, and 12PT2-4) segregated in a 3:1 ratio, and one T_1 generation (12PT2-3) in a 15:1 ratio (Table 2). These results suggested that 12PT2-1, 12PT2-2 and 12PT2-4 contained a single copy of the transgene whereas 12PT2-3 had two or more copies integrated into two different chromosomes, consistent with the Southern blot data.

P Contents and Yields of Transgenic Plants under Low-Pi and Normal-Pi Conditions

The concentrations of Pi and total P in leaves, stems, and roots of plants under hydroponic culture for 30 days are shown in Figures 5-A and 5-B. The Pi and total P contents in the leaves, stems, and roots of transgenic plants under low-Pi and normal-Pi conditions were significantly higher than those of the WT plants. As shown in Figures 5-C and 5-D, the total P contents in the fallen leaves and seeds of transgenic plants significantly increased compared to the WT plants under low-Pi and normal-Pi conditions.

As shown in Table 3, the plant height and the biomass of shoots and roots of the T_2 transgenic lines (12PT2-1, 12PT2-2, and 12PT2-4) were significantly higher than those of the WT after 30 days of low-Pi treatment. The roots of 12PT2-2 and 12PT2-4 were significantly longer than those of the WT. Under normal-Pi conditions, there were no significant differences in the parameters of vegetative organs between the transgenic and WT plants (Table 3). Figure 6 shows the symptoms of P deficiency that occurred in the WT plants at 10 days after low-Pi treatment, appearing as scattered small necrotic spots on the leaf surfaces (Figure 6-C). At 45 days after treatment, necrosis appeared in the leaf veins of the WT (Figure 6-F), and at 75 days after treatment, early abscission of the leaves was observed in the WT (Figure 6-G).

![Figure 5](https://example.com/fig5.png)

Figure 5. Phosphorus accumulation in different organs of the hydroponically-grown plants under low-Pi (LP) and normal-Pi (NP) conditions. (A) Pi concentrations in leaves, stems and roots at 30 days after hydroponic culture; (B) Total P concentrations in leaves, stems and roots at 30 days after hydroponic culture; (C) Total P concentrations in fallen leaves, (D) Total P concentrations in seeds. Five plants per line were measured. Error bars indicate SD (n= 5). The columns indicated by different letters indicate significant differences between different lines by LSD test at $P<0.05$.

476
Table 3. Parameters of vegetative organs of hydroponically-grown plants.\(^a\)

<table>
<thead>
<tr>
<th>Pi level</th>
<th>Plant line</th>
<th>Plant height (cm plant(^{-1}))</th>
<th>Root length (cm plant(^{-1}))</th>
<th>Shoot matter (g plant(^{-1}))</th>
<th>Root matter (g plant(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fresh</td>
<td>Dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Pi</td>
<td>12PT2-1</td>
<td>31.24±2.06 a</td>
<td>92.40±2.79 ab</td>
<td>58.03±6.78 a</td>
<td>7.67±0.69 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12PT2-2</td>
<td>30.62±1.52 a</td>
<td>93.86±5.66 a</td>
<td>58.71±3.70 a</td>
<td>7.71±0.33 a</td>
</tr>
<tr>
<td></td>
<td>12PT2-4</td>
<td>31.14±2.29 a</td>
<td>95.04±4.79 a</td>
<td>54.00±3.70 a</td>
<td>7.57±0.40 a</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>26.58±1.84 b</td>
<td>85.56±7.99 b</td>
<td>44.11±3.05 b</td>
<td>5.93±0.16 b</td>
</tr>
<tr>
<td></td>
<td>12PT2-1</td>
<td>39.90±0.91 a</td>
<td>82.70±2.65 a</td>
<td>65.30±3.17 a</td>
<td>10.23±0.49 a</td>
</tr>
<tr>
<td></td>
<td>12PT2-2</td>
<td>40.04±1.27 a</td>
<td>83.10±2.81 a</td>
<td>65.39±3.18 a</td>
<td>10.49±1.16 a</td>
</tr>
<tr>
<td></td>
<td>12PT2-4</td>
<td>39.26±1.42 a</td>
<td>82.46±2.05 a</td>
<td>63.16±2.27 a</td>
<td>10.40±1.47 a</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>40.74±0.56 a</td>
<td>83.40±2.51 a</td>
<td>65.57±1.82 a</td>
<td>10.95±1.22 a</td>
</tr>
</tbody>
</table>

\(^a\) Parameters were measured after the plants were cultured for 30 days under low-Pi conditions, and data are Mean±SD; five plants per plant line were measured; different letters indicate significant differences between plant lines by LSD test at \(P<0.05\).

Figure 6. Growth performance of hydroponically-grown plants under low-Pi conditions. (A–C) 10 days after low-Pi treatment; (D–F) 45 days after low-Pi treatment; (G) 75 days after low-Pi treatment. OsPT2 \(T_2\)= \(T_2\) transgenic plants; WT= Wild-type. Bar= 15 cm in A, D, and G; 1 cm in B, C, E, and F.
Table 4. Parameters of reproductive organs of hydroponically-grown plants.\(^a\)

<table>
<thead>
<tr>
<th>Pi level</th>
<th>Plant line</th>
<th>No. of flowers (flower plant(^{-1}))</th>
<th>No. of pods (pod plant(^{-1}))</th>
<th>No. of seeds (seed plant(^{-1}))</th>
<th>Seed yield (g plant(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Pi</td>
<td>12PT2-1</td>
<td>25.40±2.72 a</td>
<td>18.4±1.07 a</td>
<td>40.80±4.34 a</td>
<td>10.96±1.27 a</td>
</tr>
<tr>
<td></td>
<td>12PT2-2</td>
<td>25.40±1.71 a</td>
<td>18.2±0.79 a</td>
<td>36.20±4.73 ab</td>
<td>10.42±0.65 a</td>
</tr>
<tr>
<td></td>
<td>12PT2-4</td>
<td>25.20±2.53 a</td>
<td>17.8±3.29 a</td>
<td>34.20±2.62 b</td>
<td>9.91±1.26 a</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>18.80±1.40 b</td>
<td>11.6±0.84 b</td>
<td>23.20±1.23 c</td>
<td>6.11±0.62 b</td>
</tr>
<tr>
<td>Normal-Pi</td>
<td>12PT2-1</td>
<td>30.60±1.07 a</td>
<td>24.00±0.67 a</td>
<td>50.20±1.03 a</td>
<td>14.09±0.72 a</td>
</tr>
<tr>
<td></td>
<td>12PT2-2</td>
<td>30.80±1.93 a</td>
<td>24.60±1.58 a</td>
<td>50.80±0.79 a</td>
<td>14.43±0.41 a</td>
</tr>
<tr>
<td></td>
<td>12PT2-4</td>
<td>30.60±2.55 a</td>
<td>24.00±2.11 a</td>
<td>50.60±1.71 a</td>
<td>14.28±0.99 a</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>31.80±1.23 a</td>
<td>25.10±1.58 a</td>
<td>51.00±1.49 a</td>
<td>14.85±0.67 a</td>
</tr>
</tbody>
</table>

\(^a\) Data are Mean±SD; five plants per plant line were measured; different letters indicate significant differences between plant lines by LSD test at \(P<0.05\).
3:1 segregation consistent with Mendelian inheritance of a single dominant locus (Olhoft et al., 2003; Olhoft and Somers, 2001) in three independent lines, 12PT2-1, 12PT2-2, and 12PT2-4 (Table 2; Figure 4-B). The other line, 12PT2-3, showed a 15:1 segregation ratio for gus and bar expression consistent with the presence of multiple genetic loci (Table 2; Figure 4-B) (Olhoft et al., 2003; Olhoft and Somers, 2001). GUS assay and RT-PCR showed that the alien genes were inherited to the T\textsubscript{2} generation (Figures 3-H and 4-C).

Phosphate uptake in plants is mediated by phosphate transporters using the energy of proton gradient generated by plasma membrane H+-ATPase (Wu et al., 2011). With a stoichiometry of 2–4 H+ per H\textsubscript{2}PO\textsubscript{4}- transported, Pi absorption is accompanied by H+ influx (Panigrahy et al., 2009). After uptake into the roots, Pi is rapidly loaded into the xylem, and then transported to shoots with a long-distance translocation facilitated by phosphate transporters. Previous studies have indicated that overexpression of phosphate transporter genes (Pht1 family) in plants could enhance Pi acquisition under Pi deficiency conditions (Jia et al., 2011; Park et al., 2007; Seo et al., 2008). In this study, we demonstrated that overexpression of OsPT2 in the roots and leaves of three soybean T\textsubscript{2} transgenic lines resulted in significant increases in Pi and total P concentrations under low-Pi and normal-Pi conditions (Figure 5). Furthermore, under low-Pi conditions, since P uptake was improved in the T\textsubscript{2} transgenic plants, the growth of both the vegetative and the reproductive organs was better in the transgenic plants than in the WT (Tables 3 and 4), and P deficiency symptoms [Figure 6 (C, F and G)] were observed in the leaves of WT plants but not in the transgenic plants [(Figure 6 (B and E)]. These results suggest that overexpression of OsPT2 in transgenic plants could facilitate Pi absorption in the roots and Pi transport from roots to shoots. Besides, OsPT2 in transgenic plants could recycle and retranslocate internal Pi under low-Pi conditions (Panigrahy et al., 2009; Park et al., 2007; Wu et al., 2013).

Transgenic rice overexpressing OsPT2 accumulated excess Pi in shoots, resulting in plant Pi toxicity and growth inhibition under Pi-sufficient conditions (Liu et al., 2010). In the present study, the Pi and total P contents of the transgenic soybean were significantly higher than those of the WT plants under low-Pi and normal-Pi conditions (Figure 5). However, under normal-Pi conditions, there was no obvious Pi toxicity phenomenon observed in the transgenic soybean plants and no significant differences in the parameters of plant growth and development were found between the transgenic and WT plants (Tables 3 and 4). The difference in Pi toxicity between the transgenic soybean and transgenic rice under abundant Pi conditions might be due to the reason that soybean plants require more Pi for protein and oil synthesis than rice plants (Fageria et al., 2013).

Recently, Wu et al. (2013) have reported that overexpression of OsPHF1 in rice line 9311, an indica restorer line of Super Hybrid Rice, leads to increased tolerance to low-Pi stress and increased grain yield per plant in transgenic rice at a large-scale field test. In the current study, the seed yield per plant of three T\textsubscript{2} transgenic lines, i.e. 12PT2-1, 12PT2-2, and 12PT2-4, was significantly higher than that of WT (Table 4), which may result from improvements in P nutrition (Figure 5) and biomass production (Table 3).

CONCLUSIONS

Using OsPT2 as the target gene, we produced ten fertile T\textsubscript{0} transgenic soybean plants by Agrobacterium-mediated cotyledonal-node transformation. Under low-Pi conditions, the phosphorus concentrations (Pi and total P) and seed yield per plant of the hydroponically-grown T\textsubscript{2} transgenic plants were significantly higher than those of the WT. The overexpression of OsPT2 led to an increase in seed yield in transgenic soybean.
ACKNOWLEDGEMENTS

The authors would like to thank Prof. Guo-Hua Xu (College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China) for providing the rice phosphate transporter gene OsPT2. This work was supported by the National Key Projects and the Open Research Fund of the National Key Laboratory of Crop Genetics & Germplasm Enhancement (ZW2013006) of GMO Crops (2014ZX08004-005-007 and 2009ZX08004-011B) of China. Guo-Hu Chen and Wen Yan contributed equally to this work.

REFERENCES

17. Olhoff, P. M. and Somers, D. A. 2001. L-Cysteine Increases Agrobacterium-mediated T-DNA Delivery into Soybean
Rice Phosphate Transporter Gene OsPT2

اثر فرزون یا ناتوناقلت فسفات OsPT2 برنج بر افزایش تحمل شناس کمبود فسفر در سویا

چکیده
کمبود فسفر قابل جذب در خاک تولید سویا [Glycine max (L.) Merr.] را در سراسر جهان محدود می‌کند. هدف پژوهش حاضرین بررسی بود که آیا یک نژاد خارجی ۲ ناقل فسفات OsPT2 می‌تواند جذب فسفات‌های معدنی (P۱) و در نتیجه تولید سویای را افزایش دهد یا خیره. به این منظور، گره‌های لبه ای جداسازی از سویا با ریسه EHA105 (گروه کروم تومافسپینس) نیز دارای bar ناقل ۲ و زن‌های گاس و pCAMBIA3301-OsPT2 و OsPT2 توسط ترانسفورماسیون آزمون نیمه-کمی فرزندان (ناتو) به گیاه تراکمی بارور T۰ مشخص شد که نسل OsPT2 T۲ از طریق افزایش ۲۰ درصدی پودر تربیتی OsPT2 توسط انتخاب شد و در کشت هیدروپونیک با استفاده از محلول غذایی تغییر یافته هوگلن و تحت آزمون تسمح به غلظت کم P۱ (برابر ۲۰ می‌لی‌آمپر P با محلول غذایی استاندارد هوگلن با غلظت کم و زیاد P۱) (۱۰۰۰ می‌لی‌آمپر P) نشان داد که محلول غذایی P۱ محلول غذایی تغییری دارد. نتایج تجزیه برگ‌های ساقه‌های هاریسچه هوا و بذر گیاهان تراکمی در کمبود P۱. عملکرد گیاهان تراکمی به طور معنی‌داری بیشتر از سویای وحشی بود. در مجموع، بر اساس نتایج این بررسی می‌توان گفت که فرزون یا ناتوناقلت OsPT2 بر نقش‌های سویای تراکمی، یک شیوه معمولی و عملکردی را به‌پیشنهاد بیشتر نشان داده. بنابراین، یک نژادی مصرف کم کودهای معدنی فسفر، زن OsPT2 می‌توان به عنوان ۲ نماد پیشنهاید اصلاح زنی‌کردن گیاهان در نظر داشت.