Rainfall Interception in a Pinus eldarica Plantation in a Semi-arid Climate Zone: An Application of the Gash Model

M. Motahari¹, P. Attarod¹*, T. G. Pypker²,³, V. Etemad¹, and A. Shirvany¹

ABSTRACT

Forest canopy rainfall interception loss (I), canopy water storage (S), and the ratio of mean evaporation to mean rainfall intensity (E/R) are important components of the water balance in arid and semi-arid climate zones. The goal of this project was to quantify I and S and to evaluate the Gash interception model for rainfall interception in a mature semi-arid Pinus eldarica Medw afforestation planted in the Chitgar Forest Park near Tehran city, Iran. Measurements of gross precipitation (PG) and throughfall (TF) were recorded on an event basis from September 2009 to April 2010. For the measurement period, PG totaled 164.8 mm and I totaled 61.2 mm. I was calculated as the difference between PG and TF. On the event scale, the ratio of I:PG ranged between 0.195 and 1, and averaged 0.614. There was a strong logarithmic correlation between I:PG and PG (R² = 0.861; P value ≤ 0.01). As the size of rainfall events increased, I:PG decreased. The mean method estimated S to be 1.8 mm. The Gash model accurately estimated I to be within 1.1 mm of the total measured value. The results demonstrate that intercepted rainfall represents a considerable portion of PG in P.eldarica afforested regions of the semi-arid climate zone of Iran where soil moisture is a limiting factor for plant growth and productivity.

Keywords: Afforestation, Canopy water storage, Iran, Mean method, Throughfall.

INTRODUCTION

Afforestation is proposed for arid and semi-arid regions because it is assumed to reduce soil erosion (Zhou et al., 2002), combat desertification (Grünzweig et al., 2003), increase CO₂ fixation (De Los Rios-Carrasco et al., 2009), and provide recreational opportunities (Hüttl et al., 2000). However, afforestation may have undesirable hydrological implications. For example, converting grassland to a forest may reduce groundwater recharge and local water availability because trees extract water from deep layers in the soil profile during drier periods and intercept precipitation during rainfall events (Iroumé and Huber, 2002).

Rainfall interception loss (I) is the proportion of gross rainfall (PG) that is intercepted, stored and subsequently evaporated from leaves, branches and stems of vegetation during or following rainfall. In forests, I can be substantial, representing between 10 and 40% of annual PG (Scatena, 1990; Asdak et al., 1998, Levia and Frost, 2003). Therefore, quantifying the magnitude of I is vital in semi-arid and arid regions where soil moisture is a limiting factor affecting plant growth and productivity (Návar et al., 1999a; 1999b, Carlyle-Moses, 2004).

¹ Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
* Corresponding author; e-mail: attarod@ut.ac.ir
² School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
³ Department of Natural Resource Science, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada.
Throughfall (\(TF\)) is the portion of \(P_G\) that directly reaches the forest floor through gaps in the canopy [free throughfall coefficient (\(p\))] (Gash, 1979; Herbst et al., 2008) or water dripping from leaves and branches (canopy drip). Stemflow (\(SF\)) is rainfall that reaches the ground by flowing down stems or trunks (e.g. Návar and Bryan, 1990; Návar, 2011). \(I\) is estimated using the difference between \(P_G\) measured above the canopy and the sum of throughfall (\(TF\)) and stemflow (\(SF\)) (Hutchinson and Roberts, 1981; Mahendrappa, 1990; Tobón Marin et al., 2000; Xiao et al., 2000; Herbst et al., 2008).

Canopy (water) storage capacity (\(S\)) is one of the important variables influencing \(I\) (e.g. Rutter et al., 1971; Jackson, 1975; Liu, 1997; Pykker et al., 2005; Crockford and Richardson, 2000). The water stored in the canopy can either evaporate directly to the atmosphere, be absorbed by the canopy, or drop to the ground as throughfall or stemflow. \(S\) depends on the characteristics of the intercepting surface. These characteristics include leaf area index (\(LAI\)) (Liu, 1998; Llorens and Gallart, 2000; Fleischbein et al., 2005) and leaf shape, bark morphology (e.g. Pykker et al., 2011), dimension and orientation of the branches (Jackson, 1975; Návar and Bryan, 1990), rainfall intensity (Calder et al., 1996; Jackson, 1975) as well as climatic factors such as wind speed (Hörmann et al., 1996; Jackson, 1975).

Various types of regression equations have been proposed to calculate \(I\) (Zinke, 1967; Jackson, 1975). However, even for the same vegetation type, the equations frequently differed because of the unique characteristics of each forest stand (van Dijk and Bruijn, 2001). Gash (1979) introduced a simpler storm-based model that has been used with considerable success to estimate \(I\) in a wide range of coniferous and broadleaf forests (e.g. Gash et al., 1980; Pearce et al., 1980) as well as tropical rainforests (e.g. Lloyd et al., 1988; Hutjes et al., 1990). However, attempts to use the analytical model in more open forests tended to overestimate \(I\) (Teklehaimanot et al., 1991; Gash et al., 1995; Návar, 2012). This led to the development of a ‘sparse canopy’ version of the Gash model in which evaporation from the wet canopy was considered linearly dependent on canopy cover fraction (\(c\)) (Gash et al., 1995).

Land managers in Iran are faced with year round water shortages because the country has vast expanses of arid and semi-arid regions. During the dry period (May to October), the water shortages become particularly severe. Knowledge about the amount of rainfall intercepted by different tree species will help managers choose suitable species. Furthermore, evidence demonstrating the applicability of the Gash model in this region will provide a tool for land managers to estimate \(I\) for different forest types. Currently, Pinus eldarica is a widely accepted species for afforestation in Iran, as well as other countries with similar climates (De Los Ríos-Carrasco et al., 2009), because \(P.\) eldarica tolerates drought (Sardabi, 1998). To our knowledge, a comprehensive investigation on the impact of \(P.\) eldarica on \(I\) has not been reported for forests in Iran, nor in other countries in the region, despite the widespread use of this species in afforestation efforts. Therefore, the objectives of this paper are to (i) quantify how \(TF\) and \(I\) are partitioned in a planted \(P.\) eldarica forest located in a semi-arid climate zone of Iran and (ii) determine \(S\) using the mean method and (iii) assess the applicability of the Gash model (Gash et al., 1995) for \(P.\) eldarica forests.

MATERIALS AND METHODS

Site Description

The study occurred in a nearly closed canopied, forty-year-old pure and even-aged Pinus eldarica Medw. afforestation located in the Chitgar Forest Park of Tehran, Iran (Figure 1). The pine forest covers 366.5 ha of the Park and represents 45% of the total area. \(TF\) measurements were made in a 270 m² plot (35°10’ N, 51°10’ E, and 1269 m asl).Tree density was 1185 trees ha⁻¹ and the total basal area was 64.5 m² ha⁻¹. Mean tree height and diameter at breast height (\(DBH\)) were 11 m and 23.5 cm, respectively. Measurements were performed from September 2009 to April 2010.

From 1996-2010, mean annual precipitation was 267.6 mm (SE: ±20.4 mm) (Chitgar Meteorological Station (35° 44’ N, 51° 10’ E, and
1305 m asl). For this region, the wettest and driest months are March (45.4 mm; SE: ±10.7 mm) and August (0.9 mm; SE: ±0.4 mm), respectively. In this region, the dry period begins in May and ends in October. The wet period extends from November to April, and historically accounts for 88% of the total annual precipitation. The mean annual temperature is 17.2°C (SE: ±0.1°C); August is the warmest month with average temperature of 29.4°C (SE: ±0.3°C) and January is the coldest month (3.8°C; SE: ±0.8°C).

Field Measurements

Gross Rainfall (P_G)

P_G was measured by 6 cylindrical plastic collectors that were 9 cm in diameter and 20 cm in height. The 6 collectors were placed in a neighboring open area that was 15 m from the P. eldarica forest. The quantity of water in the collectors was measured manually using a graduated cylinder with an accuracy of 1 ml. After a rain event, rainwater was measured from each of the rainfall collectors 2 hours following an event if the event occurred during daylight hours or at sunrise if the event occurred at night (Carlyle-Moses et al., 2004).

Throughfall (TF), Stemflow (SF) and Rainfall Interception Loss (I)

TF was measured using 45 rain collectors of the same design as the collectors used to quantify P_G. TF collectors were randomly placed beneath the forest canopy within the study plot (Figure 2). TF volume was measured at the same time P_G was measured. In the present study, SF was not directly measured because P. eldarica has rough bark and a canopy structure that is similar to other species with low stemflow (Helvey and Patric, 1965; Geiger, 1965; Llorens et al., 1997, 2000; Lankreijer et al., 1993; Návar, 2012). While Pinus trees can have stemflow above 5% of gross precipitation, the vast majority of studies have found Pinus species to have stemflow values well below 5% of gross precipitation (Zink, 1967; Steinbuck, 2002). For example, Návar (2011) reported less than 0.20% for
Figure 2. Positions of Pinus eldarica trees (open circles) and throughfall (TF) collectors (filled circles) in the study plot. Gross rainfall (PG) collectors are shown in an open adjacent area. The actual positions of trees and collectors in the study plot were surveyed using a compass and a tape measure.

Canopy Storage Capacity (S) and Free Throughfall Coefficient (p)

For the purposes of this paper, we define S as an estimate of the water remaining in the canopy after rainfall ceases and evaporation is negligible (Gash et al., 1995). To estimate S, we applied the commonly used mean method (Jackson, 1975; Pypker et al., 2005; Link et al., 2004; Návar, 2012). The mean method estimates S, p and the ratio of the mean evaporation rate to the mean rainfall intensity (E/\bar{R}) by creating two linear regressions (A and B) that relate TF to PG (Jackson, 1975; Pypker et al., 2005; Link et al. 2004). The first regression line (A) is fit to all the rainfall events where PG was sufficient to saturate the canopy and the second regression (B) is fit to all the rainfall events where PG was insufficient to saturate the canopy. When using the mean method, the difference between PG and TF at the intersection point provides an estimate of S, the slope of the second regression line provides the estimate of p and one minus the slope of the first regression line represents E/\bar{R} (Leyton et al., 1967; Jackson, 1975; Klaassen et al., 1998; Llorens and Gallart, 2000; Pypker et al., 2005). The amount of rainfall sufficient to saturate the canopy (Ps) was estimated subjectively by locating the inflection point on the graph relating TF to PG.

Gash Model (I)

In this study, a comparison was made between I estimated by the field measurements and by the revised Gash model (Gash et al., 1995). The revised Gash model is a powerful tool for estimating I because of its simple requirements of S, p, and E/\bar{R} (Gash et al., 1995). The Gash model is the most common rainfall interception model used in interception studies (Muzylo et al., 2009) although it has been reported by some to incorrectly predict I in sparse forests (Návar, 2012). This model might be a valuable tool for studying rainfall interception loss in forests in Iran. The Gash model is, however, limited by the following assumptions outlined in Gash (1979): (1) rainfall is represented by a series of discrete storms separated by periods long enough to allow the canopy to completely dry up; (2) the
Figure 3. Long-term and study period mean monthly precipitation (mm) and air temperature (°C) at the Chitgar Forest Park Meteorological station. The darker bars and dashed line indicate the long-term (1996-2010) monthly means of the precipitation and air temperature, respectively. The light bars and open circles represent the precipitation and air temperature during the study period, respectively. Error bars show the standard error (SE) of monthly precipitation for the long-term record.

meteorological conditions are constant throughout the storm; and (3) there is no drip from the canopy during wet-up. Clearly, assumptions 2 and 3 are frequently violated during a storm as meteorological conditions such as wind speed, rainfall intensity and vapor pressure deficit can change throughout the storm and wind speeds may vary and shake the canopy causing drip during wet-up. Yet, the Gash model has proven to be very robust in predicting annual I (Gash et al., 1995). The following is the Gash model for sparse canopies (Gash et al., 1995). The interception (\(I_c\)) during \(m\) small storms that were insufficient to saturate the canopy is described by:

\[
I_c = c \sum_{j=1}^{m} P_{G,j}
\]

(1)

Where, \(c\) represents the canopy cover. The canopy cover was assumed to equal 1-\(p\) (Gash et al., 1995; Herbst et al., 2008). The amount of interception for \(n\) storms sufficient to saturate the canopy (\(I_n\)) (i.e. \(\geq\) the amount of rainfall to saturate the canopy–\(P_s\)) is calculated as sum of the amount of water lost during wet-up (\(I_w\)), the evaporation after canopy saturation, but prior to rainfall ceasing (\(I_s\)) and the evaporation after the storm ceases (\(I_a\)). These interception variables are calculated as:

\[
I_w = ncP_s - ncS_c
\]

(2)

\[
I_a = ncS_c
\]

(3)

\[
I_s = (\bar{E}/\bar{R}) \sum_{j=1}^{n} (P_G - P_j)
\]

(4)

\[
I_n = I_w + I_s + I_a
\]

(5)

Where, \(S_c = S/c\) and (Gash et al., 1995). We parameterized the Gash model using estimates of \(p, S, P_s,\) and \(\bar{E}/\bar{R}\) by applying the mean method to half of the rainfall data. This resulted in estimates of \(p, S, P_s,\) and \(\bar{E}/\bar{R}\) equal to 0.16, 2.09 mm, 2.68 mm, and 0.11, respectively. These results were then applied to the other half of the data set to determine if the Gash model can accurately estimate \(I\).

RESULTS

Long-term Average and Observed Meteorology

From September 2009 to April 2010, the cumulative gross precipitation was 279.6 mm, slightly more than the long-term average of 267.6 mm. The annual distribution of precipitation during the study period was similar to that of the long-term average because most of the precipitation recorded
during the study period (91%) occurred during the wet period (from November to May; Figure 3). Historically, the wet period accounts for 88% of the total annual precipitation. The wettest and driest months in the long-term records were March (45.4 mm) and August (0.9 mm), respectively. However, during the study period, the wettest month was February (75.5 mm) and the driest months were July and August (0 mm) (Figure 3). Average air temperature was 17.8 °C during the study period, similar to the long-term average temperature of 17.2 °C. Historically, August was the warmest month (average temperature of 29.4 °C), but, during the study period, July was the warmest (30.3 °C). Like the long-term average, January was the coldest month during the study period (7.9 °C) (Figure 3).

Gross Rainfall (P_G) and Throughfall (TF)

From September 2009 to April 2010, 164.8 mm of rain fell in thirty rainfall events. Cumulative P_G for an individual rainfall event ranged from 0.2 mm to 27.5 mm, with a mean P_G depth per event of 5.5 mm. The rainfall events were grouped into three classes (Table 1) to allow for a better understanding of the relationship between P_G and I. The three classes are: P_G ≤ 1.5 mm, 1.5 mm < P_G ≤ 5.5 mm, and P_G > 5.5 mm. This resulted in 10 rainfall events being allocated to each of the three classes.

Of the 30 rainfall events recorded during the measurement period, 103.6 mm, or 62.8% of the cumulative P_G reached the forest floor as TF. Mean TF was 3.5 mm (CV: 72.9%) or 38.6% of P_G and ranged from 0.0 to 80.5% for P_G events of 0.2 to 27.5 mm, respectively. For the P_G ≤ 1.5 mm, 1.5 mm < P_G ≤ 5.5 mm, and P_G > 5.5 mm rainfall event classes, the mean TF:P_G values were 8.9, 40, and 67%, respectively (Table 1).

Rainfall Interception Loss (I)

Rainfall interception loss totaled 61.2 mm, or 37.2% of the total P_G for the study period. The percentage lost to I depended on storm size, with the percentage varying from 19.5% of P_G for larger rainfall events (27.5 mm) to 100.0% of P_G (0.2 mm) for smaller rainfall events.

The ratio of I to P_G (relative I or I:P_G) was correlated with P_G (Figure 4). The mean values of I:P_G showed a decreasing trend, with a decreasing ratio as P_G increased. A negative logarithmic significant relationship (r^2 = 0.861; P value ≤ 0.01) was fitted between I:P_G and P_G.

Canopy (Water) Storage Capacity (S)

S was determined using a method that related P_G to TF (Figure 5). The mean method (Klaassen et al., 1998; Jackson, 1975) estimated S to be 1.8 mm (Figure 5).

Lastly, the mean method estimated p and \(\frac{E}{R} \) to be 0.1 and 0.16, respectively.

Gash Model

The Gash Model accurately estimated I (Figure 6). On a per-storm basis, the difference between modeled and measured values ranged from 0.03 to 1.6 mm, with the greatest differences occurring for the largest storms. The Gash model predicted I to be 26.7 mm, and this only differed from the measured I (25.6 mm) by 1.1 mm. The slope of the line relating the measured and modeled estimates of I was 0.86 (95% CI = 0.17). The measured and modeled estimates of I were not statistically different because the slope was not significantly different from 1 (P-value > 0.1).

<table>
<thead>
<tr>
<th>P_G class (mm)</th>
<th>Frequency</th>
<th>P_G (mm)</th>
<th>TF:P_G (%)</th>
<th>I:P_G (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.5</td>
<td>10</td>
<td>7.8</td>
<td>8.9</td>
<td>91.1</td>
</tr>
<tr>
<td>1.5-5.5</td>
<td>10</td>
<td>34.7</td>
<td>40.0</td>
<td>60.0</td>
</tr>
<tr>
<td>> 5.5</td>
<td>10</td>
<td>122.3</td>
<td>67.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Table 1. Mean cumulative gross rainfall (P_G), mean throughfall as a percentage of P_G (TF:P_G), and mean rainfall interception as a percentage of P_G (I:P_G) for rainfall events from September 2009 to April 2010. The relationships are provided for three P_G classes.
Rainfall Interception and the Gash Model

Figure 4. The relationship between relative rainfall interception loss (I_{PG}) and P_G in *Pinus eldarica* afforestation.

Figure 5. Estimation of canopy storage capacity (S) and free throughfall coefficient (p) using the relationship between gross rainfall (P_G) and throughfall (TF) during the study period (Mean method). The difference between P_G and TF at the inflection point estimates the canopy storage capacity (S). The slope of regression B represents p and 1 minus the slope of the A regression line represents the ratio of mean evaporation to mean rainfall intensity (\bar{E}/\bar{R}).

Figure 6. A comparison between Gash model estimates of I to measured I for half of the data. The 1:1 line is the dashed line. The solid line represents a linear regression between the x-axis and y-axis.
DISCUSSION

Partitioning of Gross Precipitation between Throughfall and Interception Loss

A review of the literature on rainfall partitioning in various pine stands (Table 2) indicates that the values for \(TF:PG \) and \(I:PG \) obtained in the present study differed slightly with those measured in other pine forests (Table 3). Llorens et al. (1997) reported that the average values of \(TF:PG \) and \(I:PG \) in a Pinus sylvestris forest in Eastern Pyrenees, Spain, were 0.747 and 0.24, respectively. Mahendrappa (1990) reported \(TF \) and \(I \) for a Pinus strobus plantation in Canada to be 65 and 30.7% of annual \(PG \), respectively. In Portugal, the measured value of \(TF \) in a Pinus pinaster forest was 82.6% of \(PG \) during the two years of measurement (Valente et al., 1997). It is noteworthy that value of \(I:PG \) obtained in our study (0.37) was on the high end of the 0.12 to 0.42 measured by others in needle-leaved evergreen forests (Hibbert, 1967; Zinke, 1967) (Table 2). The partitioning of rainfall into \(TF \) and \(I \) in forest ecosystems has been demonstrated to be a function of incident rainfall characteristics (amount, intensity, duration, and temporal distribution of rainfall events) (Jackson, 1975; Crockford and Richardson, 2000; Xiao et al., 2000; Marin et al., 2000; Huber and Iroumé, 2001; Iroumé and Huber, 2002; Link et al., 2004; Návar, 2012), meteorological conditions (air temperature, relative humidity, wind speed, and wind direction) (Crockford and Richardson, 2000), and forest structure (species composition, stand age, basal area, stand density and canopy morphology and architecture) (Forgeard et al., 1980; Xiao et al., 2000; Iroumé and Huber, 2002; Carlyle-Moses, 2004; Fleischbein et al., 2005; Deguchi et al., 2006; Staelens et al., 2008; Muzzylo et al., 2009). Given the dry nature of this region, it is likely that the differences in rainfall partitioning reported by other researchers were due, in part, to differences in the above mentioned factors.

The size of \(PG \) had a major impact on the partitioning of rainfall into \(TF \) and \(I \) for the P. eldarica afforestation in this study. As the size of \(PG \) increased, the ratio of \(I \) to \(PG \) (\(I:PG \)) decreased. For example, as \(PG \) increased from \(< 1.5 \text{ mm} \) to \(> 5.5 \text{ mm} \), \(I:PG \) decreased from 0.91 to 0.33, respectively (Table 1). In this study, 67% of the rainfall events were less than 5.5 mm, therefore, the large proportion of incident \(PG \) wetted the crown surface and subsequently contributed to interception loss. Therefore, part of the difference in interception loss between this study and others in the literature may have resulted from different storm sizes. However, while \(TF \) and \(PG \) were well correlated, the lowest \(TF \) values were not synchronized with the lowest values of \(PG \) (0.22), thereby suggesting that the climatic factors also played a very important role in the rainfall partitioning.

Estimate of Canopy (Water) Storage Capacity

In the present study, \(S \) was estimated to be 1.8 mm (Table 3). The estimates of \(S \) in the present study fall within the range reported for other pine forests. For example, using artificial wetting, Llorens and Gallart (2000) determined \(S \) in a Pinus sylvestris forest (1,400 trees ha\(^{-1}\)) in Eastern Pyrenees, Spain, to be 2 mm. Liu (1998) determined \(S \) to be 0.7 mm for a Pinus elliottii afforestation (1,190 trees ha\(^{-1}\)) similar to this study). Llorens (1997) also reports an \(S \) of 1.3 mm by an indirect method for a Pinus sylvestris afforestation (2,400 trees ha\(^{-1}\)). Lastly, Návar (2012) reported a mean value of 1.03 mm for temperate, dry P. pseudostrobus forests in northern Mexico.

Changes in rainfall intensity (Calder et al., 1996; Jackson, 1975) and wind speed (Jackson, 1975; Hörmann et al., 1996) are correlated with changes in \(S \). The nature of the intercepting surface also controls the size of \(S \) (type of species, leaf shape, dimension and orientation) (Jackson, 1975; Liu, 1998; Llorens and Gallart, 2000; Fleischbein et al., 2005). Wind movement of the canopy may greatly reduce the amount of water which can be held before drainage occurs (Jackson, 1975; Hörmann et al., 1996). Therefore, the amount of \(S \) may vary from event to event even if canopy characteristics remain constant.
Table 2. A review of measured values of relative throughfall (TF:PG), relative rainfall interception (I:PG) as well as relative stemflow (SF:PG) obtained from various research carried out on different species of pine (stand). TF, SF, I, and PG are referred to throughfall, stemflow, rainfall interception, and gross rainfall, respectively.

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>I:PG (%)</th>
<th>TF:PG (%)</th>
<th>SF:PG (%)</th>
<th>Tree density (Stem ha$^{-1}$)</th>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus pinaster</td>
<td>17.1</td>
<td>82.6</td>
<td>0.3</td>
<td>312</td>
<td>Portugal</td>
<td>Valente et al. (1997)</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>18.3</td>
<td>72.8</td>
<td>8.9</td>
<td>1708</td>
<td>South-Eastern</td>
<td>Crockford and Richardson</td>
</tr>
<tr>
<td>Pinus wallichiana</td>
<td>21</td>
<td>76.3</td>
<td>2.7</td>
<td>1200</td>
<td>India</td>
<td>Singh (1987)</td>
</tr>
<tr>
<td>Pinus densiflora</td>
<td>14</td>
<td>83</td>
<td>3</td>
<td>1575</td>
<td>Etajima Island</td>
<td>Mitsudera et al. (1984)</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>30</td>
<td>---</td>
<td>---</td>
<td>450</td>
<td>New Zealand</td>
<td>Kelliher et al. (1992)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>32</td>
<td>78.5</td>
<td>15-30</td>
<td>4600</td>
<td>Crowthorne, Berks</td>
<td>Rutter (1963)</td>
</tr>
<tr>
<td>Pinus massoniana</td>
<td>27.2</td>
<td>70.4</td>
<td>2.4</td>
<td>2628</td>
<td>China</td>
<td>Cao et al. (2008)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>24</td>
<td>74.7</td>
<td>1.3</td>
<td>2400</td>
<td>Eastern Pyrenees, Spain</td>
<td>Llorens et al. (1997)</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>26.5</td>
<td>---</td>
<td>---</td>
<td>1498</td>
<td>Shoalhaven-Australia</td>
<td>Pock et al. (1991)</td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>35</td>
<td>65</td>
<td>600</td>
<td>2674</td>
<td>Southeast England</td>
<td>Rutter et al. (1971)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>42.4</td>
<td>57.6</td>
<td>1870</td>
<td>500</td>
<td>Northeast Scotland</td>
<td>Gash et al. (1980)</td>
</tr>
<tr>
<td>Pinus strobus</td>
<td>30.7</td>
<td>65</td>
<td>5.3</td>
<td>2900</td>
<td>Canada</td>
<td>Mahendrappa (1990)</td>
</tr>
<tr>
<td>Pinus resinosa</td>
<td>28.3</td>
<td>69</td>
<td>0.7</td>
<td>500</td>
<td>Canada</td>
<td>Mahendrappa (1990)</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>12.6</td>
<td>76-83</td>
<td>1-4</td>
<td>600</td>
<td>Southeast Europe</td>
<td>Loustau et al. (1992)</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>12.5</td>
<td>87.5</td>
<td>---</td>
<td>430</td>
<td>France</td>
<td>Lankreijer et al. (1993)</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>17.8</td>
<td>82.0</td>
<td>0.2</td>
<td>125</td>
<td>Northern Mexico</td>
<td>Návar (2011; 2012)</td>
</tr>
</tbody>
</table>

Table 3. A review of measured values of canopy storage capacity (S), free throughfall coefficient (p) and the measurement methods used to estimate S and p in coniferous forests.

<table>
<thead>
<tr>
<th>Species</th>
<th>Density (trees ha$^{-1}$)</th>
<th>S (mm)</th>
<th>p</th>
<th>Method</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus sylvestris</td>
<td>509</td>
<td>2.3</td>
<td>0.2</td>
<td>Direct</td>
<td>Llorens and Gallart (2000)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>764</td>
<td>1.2</td>
<td>0.4</td>
<td>Direct</td>
<td>Llorens and Gallart (2000)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>800</td>
<td>0.8</td>
<td>0.3</td>
<td>Regression line</td>
<td>Gash and Morton (1978)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>1400</td>
<td>2</td>
<td>0.2</td>
<td>Direct</td>
<td>Llorens and Gallart (2000)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>1782</td>
<td>1.5</td>
<td>0.3</td>
<td>Direct</td>
<td>Llorens and Gallart (2000)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>1870</td>
<td>1</td>
<td>0.1</td>
<td>Regression line</td>
<td>Gash et al. (1980)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>2400</td>
<td>1</td>
<td>0.3</td>
<td>Regression line</td>
<td>Llorens (1997)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>2674</td>
<td>2.7</td>
<td>0.1</td>
<td>Direct</td>
<td>Llorens and Gallart (2000)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>2900</td>
<td>0.3</td>
<td>---</td>
<td>----</td>
<td>Pertua et al. (1980)</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>4600</td>
<td>1.6</td>
<td>---</td>
<td>Regression line</td>
<td>Rutter (1963)</td>
</tr>
<tr>
<td>Pinus elliottii</td>
<td>1185</td>
<td>1.77</td>
<td>0.1</td>
<td>Regression line (Mean method)</td>
<td>This study</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>312</td>
<td>0.4</td>
<td>0.4</td>
<td>Regression line</td>
<td>Valente et al. (1997)</td>
</tr>
<tr>
<td>Pinus elliottii</td>
<td>430</td>
<td>0.3</td>
<td>0.4</td>
<td>Regression line</td>
<td>Lankreijer et al. (1993)</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>800</td>
<td>0.5</td>
<td>0.6</td>
<td>Regression line</td>
<td>Loustau et al. (1992)</td>
</tr>
<tr>
<td>Pinus elliottii</td>
<td>464</td>
<td>0.4</td>
<td>---</td>
<td>Direct</td>
<td>Liu (1998)</td>
</tr>
<tr>
<td>Pinus elliottii</td>
<td>496</td>
<td>0.5</td>
<td>---</td>
<td>Direct</td>
<td>Liu (1998)</td>
</tr>
<tr>
<td>Pinus elliottii</td>
<td>672</td>
<td>0.4</td>
<td>---</td>
<td>Direct</td>
<td>Liu (1998)</td>
</tr>
<tr>
<td>Pinus elliottii</td>
<td>1190</td>
<td>0.7</td>
<td>---</td>
<td>Direct</td>
<td>Liu (1998)</td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>600</td>
<td>1.1</td>
<td>0.3</td>
<td>Regression line</td>
<td>Rutter et al. (1971)</td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>600</td>
<td>1</td>
<td>---</td>
<td>----</td>
<td>Robins (1974)</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>450</td>
<td>0.4</td>
<td>---</td>
<td>Regression line</td>
<td>Kelliher et al. (1992)</td>
</tr>
<tr>
<td>Pinus pseudostrobus</td>
<td>125</td>
<td>1.03</td>
<td>0.26</td>
<td>Regression line and optical densitometers</td>
<td>Návar (2012)</td>
</tr>
</tbody>
</table>
Several studies have investigated the effects of changes in forest cover on the water recharge (Bosch and Hewlett, 1982; Blackie, 1993; Sahin and Hall, 1996). The reduction in water recharge upon afforestation is mainly due to an increase in interception, evaporation, and transpiration (Van der Salm et al., 2007). The rainfall interception from afforestations with *P. eldarica* in Iran is considerable, averaging 37% of P_G. Therefore, rainfall interception loss needs to be considered in future water balance studies and in the selection of tree species for afforestation practices. Furthermore, future research is needed to quantify the full hydrological (transpiration and rainfall interception loss) effect of these afforestation practices.

Gash Model

The Gash model proved to accurately estimate I for storms up to 30 mm in size. Past research on I in other coniferous forests have also successfully applied the Gash model (Gash et al., 1980; Gash et al., 1999; Valente et al., 1997; Návar et al., 1999a and b; Návar, 2013). As with past research, there were some inaccuracies on an individual storm basis (e.g. Llorens, 1997). However, the model often accurately predicts total I (e.g. Llorens, 1997). Hence, his model could be a valuable tool for estimating TF in watersheds dominated by *P. eldarica* for years with varying annual precipitation. Ultimately, the estimates of TF could be used to better understand annual changes in streamflow.

CONCLUSIONS

This study was carried out in a forty-year-old *Pinus eldarica* afforestation during a 9-month period in a semi-arid climate zone of Iran. I and TF represented 37.2 and 62.8% of annual P_G, respectively. It was observed that rainfall partitioning into TF and I was strongly affected by the size of P_G; with the ratio of $I:P_G$ declining as P_G increased. S in the *P. eldarica* stand was 1.8 mm.

This research is the first to document rainfall partitioning and S in a *P. eldarica* afforestation. In the semi-arid climate zone of Iran, plant growth and productivity is strongly affected by water availability. Therefore, I should be considered when selecting species for afforestation projects in the semi-arid climate regions as it can be significant.

REFERENCES

10. Crockford, R. H. and Richardson, D. P. 2000. Partitioning of Rainfall into Throughfall,

برای برآورد باران‌ریایی در یک توده خالص جنگل‌داری شده کاج تهران (\(P_{G}\)) و تاخ‌بندی (Medw) و افزایش گیاهی باران‌گی در هر بارش (\(TF\)) از مهر ۱۳۸۸ تا مهر ۱۳۸۹ صورت گرفت. در این دوره در مجموع ۱۶۴/۸ میلی‌متر باران‌گی در جمع آوری شده که حد ۶۱/۲ میلی‌متر آن به باران‌ریایی اختصاص یید. باران‌ریایی از تفاوت بین باران‌گی در هر بارش و تاخ‌بندی محاسبه گردید. نسبت باران‌ریایی به باران‌گی در هر بارش (\(I/P_{G}\)) بین ۱۹۵/۰۰ و ۱/۰ به طور میانگین ۶۱۴/۰ بست آمد. نتایج نشان داد رابطه لگاریتمی قوی بین نسبت باران‌ریایی به باران‌گی و باران‌گی در هر بارش (\(r^2 = 0/861; p \text{ value} \leq 0/01\)) وجود دارد به طوری که با افزایش مقدار باران‌گی در هر بارش، نسبت باران‌ریایی به باران‌گی در هر بارش کاهش نشان می‌دهد. طرفینگی‌های تاج‌پوشی با استفاده از روش میانگین ۱/۸ میلی‌متر اندازه‌گیری گردید. مدل Gash مدل باران‌ریایی را با ۱/۱ میلی‌متر اختلاف نسبت به مقدار باران‌ریایی اندازه‌گیری شده در توده برابر کرد. باران‌ریایی ممکن است توجهی از باران‌گی در هر بارش را در توده جنگل‌داری در منطقه نشان خرید ایران که رطوبت خاک عامل محدود کننده رشد و تولید گیاهان به حساب می‌آید، به خود اختصاص می‌دهد.