Determination of Cherry Color Parameters during Ripening by Artificial Neural Network Assisted Image Processing Technique

S. Taghadomi-Saberi¹, M. Omid¹*, Z. Emam-Djomeh², and Kh. Faraji-Mahyari¹

ABSTRACT

Among the different classes of physical properties of foods, color is considered the most important visual attribute in quality perception. Consumers tend to associate color with quality due to its good correlation with physical, chemical and sensorial evaluations of food quality. This study used an inexpensive method to predict sweet cherries color parameters by combining image processing and artificial neural network (ANN) techniques. The color measuring technique consisted of a CCD camera for image acquisition, MATLAB software for image analysis, and ANN for modeling. To demonstrate the usefulness of this technique, changes of cherry color during ripening were studied. After designing, training, and generalizing several ANNs using Levenberg-Marquardt algorithm, a network with 7-14-11-3 architecture showed the best correlation ($R^2 = 0.9999$) for L^*, a^* and b^* values from Chroma meter and the machine vision system. L^* and b^* parameters decreased during ripening of cherries and a^* parameter increased at first and then decreased. Evaluation of L^*, a^* and b^* values showed the possibility of reliable use of this system for determination of absolute color values of foodstuffs with a much lower cost in comparison with Chroma meter.

Keywords: Cherry fruit, Color parameters L, a and b, Modeling.

INTRODUCTION

Iran is the third largest producer of sweet cherry ($Prunus avium$) in the world, after Turkey and United States of America (Anon., 2010). The changes in cherry (Takdaneh variety) color during ripening is shown in Figure 1. The senescence period changes in 6 stages, from green to yellow, pink, light red, red, and finally to black.

Consumers select their foods primarily based on visual perception which is a mix of the color, shape, and size of the product. Among the different classes of physical properties of foods and foodstuffs, color is considered the most important visual attribute in the perception of product quality and consumers tend to associate color with flavor, safety, storage time, nutrition, and level of satisfaction due to the fact that it correlates well with physical, chemical, and sensorial evaluations of food quality (Pedreschi et al., 2006; Valadez-Blanco et al., 2007; Iqbal et al., 2010). In image analysis for food products, color is an influential attribute and powerful descriptor that often implies object extraction and identification and it can be used to quantify the color distribution of non-homogeneous samples (Brosnan and Sun, 2003).

Three frequently used color approaches include RGB, HSV, and CIELab color spaces. Red, green, and blue (RGB) color...
space can describe over 16 million colors by combining different amounts of red, green, and blue, with possible values ranging from 0 to 255. Although the RGB method is capable of distinguishing between millions of colors, it is not representative of how humans perceive color. The second approach is hue, saturation, and value (HSV) color space, in which values range from 0 to 1.0 for each of the 3 variables. As hue moves from 0 to 1.0, color varies from red, yellow, green, cyan, blue, magenta, and then back to red. Saturation values vary from 0 to 1.0, increasing with the amount of black in the color. Value represents the brightness of the colors specified by hue and colors become increasingly brighter as value varies from 0 to 1.0. HSV values can also be represented as values ranging from 0 to 255, making it easier to transform between the RGB and HSV color representations. The HSV color space better represents how humans perceive color, due to the varying levels of saturation and value (Zhou et al., 2004). The third approach uses CIE Lab color space. CIE is often used in food research studies. The $L^*a^*b^*$ color space is device independent, providing consistent color regardless of the input or output devices such as digital camera, scanner, monitor and printer (Yam and Papadakis, 2004). The CIE standard Lab color spaces experiments have revealed that the L^*, a^* and b^* values are easier to be related to the perceived color than other existing scales. This color space ($L^*a^*b^*$) is often used in food research studies and almost always the color of foods has been measured in $L^*a^*b^*$ mode. Food color information could be accomplished using commercial software packages such as Photoshop or MATLAB (Afshari-Jouybari and Farahnaky, 2011). Such software not only can be applied to simulate the role of available commercial colorimetric instruments with much lower cost, but are also more accessible nowadays. In other words, the advantages of this method including its acceptable accuracy, simplicity, availability, and low cost, make it more practical.

Machine vision (MV) is a technique for acquiring and analyzing an image of a real scene by computers for obtaining information or controlling processes (Brosnan and Sun, 2003). The use of MV for the quality inspection of fruits and vegetables has increased during recent years (Blasco et al., 2003). Quality evaluation, detection of defects, identification, grading and sorting of fruits and vegetables, meat and fish, bakery products, and prepared goods, among others, are the examples of MV in the food industry (Yoshida et al., 2008; Omid et al., 2010a; Unay et al., 2011). For instance, Kılıç et al. (2007) developed a computerized inspection system to determine food $L^*a^*b^*$ and found a good agreement, i.e. R^2 of 0.958, 0.938, and 0.962 for L^*, a^*, and b^*, respectively, between color measurement with computerized inspection system and a spectrophotometer. Afshari-Jouybari and Farahnaky (2011) studied the potential of using digital imaging and Photoshop software and Artificial Neural Network (ANN) for measurement of Mazafati date fruit color change during accelerated ripening, compared to the Hunter Lab system. The correlation

Figure 1. Sweet cherry ripeness stages.
Determination of Cherry Color Parameters

coefficient obtained between Photoshop and Hunter Lab was 0.991, 0.966, and 0.987 for
L^*, a^* and b^* values, respectively. Recently, Behroozi Khazaei et al. (2103) implemented
a MV system to evaluate grape drying through an assessment of the fruit’s
shrinkage and quality during the dehydration. Anthocyanin content constantly
increased during ripening stages of sweet
cherry as color changed from green to red as
seen in Figure 1 (Taghadomi-Saberi et al.,
2013). Anthocyanin, which is a pigment, is
well correlated with color of cherry;
therefore, anthocyanin and color can both be
considered as a good discriminant for cherry
ripening. Generally, the use of MV for color
quality estimation requires an absolute color
calibration technique based on a common
interchange format for color data and a
knowledge of which features from an image
can be best correlated with product quality.
Rapid advances in hardware and software
for digital image processing (DIP) have led
to several studies on the development of
MVs (Brosnan and Sun, 2003).

Various techniques such as ANN,
statistical learning (SL), fuzzy logic (FL)
and genetic algorithm (GA) have been
applied increasingly for agri-food quality
evaluation using MV in recent years (Du and
Sun, 2006; Abbasgholipour et al., 2011;
Fadilah et al., 2012). ANNs are composed of
interconnecting artificial neurons
(programming constructs that mimic the
properties of biological neurons). ANNs
may either be used to gain an understanding
of biological neural networks, or for solving
artificial intelligence problems without
necessarily creating a model of a real
biological system. The real biological
nervous system is highly complex; ANN
algorithms attempt to abstract this
complexity and focus on what may
hypothetically matter most from an
information processing point of view. Du
and Sun (2006) reviewed latest advances in
learning techniques such as ANNs, SL, FL
and GA for food quality evaluation using
MV. Abbasgholipour et al. (2011)
implemented a supervised color image
segmentation using a permutation-coded GA
to identify regions in hue–saturation–
intensity (HSI) color space for desired and
deresired raisin detection in various
conditions. There are a large number of
researches applying ANN for food-related
topics. For instance, by using DIP and ANN,
Fadilah et al. (2012) classified ripeness
stages of oil palm fresh fruit bunch based on
color features. They could improve
classification accuracy from 91.67 to
93.33% by applying principal component
analysis (PCA). In another work,
Momemzade et al. (2012) applied ANN for
predicting drying time of green pea in a
microwave assisted fluidized bed dryer.
Error analysis results revealed that a
network with the 'Log sigmoid' transfer
function and "trainrp" back propagation
algorithm was the most appropriate ANN
model for predicting drying time of green
pea.

Unlike commercial Chroma meters which
measure only a small area, MV systems can
be more useful for food color analysis.
Although it is possible to convert from RGB
to $L^*a^*b^*$ in "Image processing' toolbox of
MATLAB", it cannot determine the exact
values of $L^*a^*b^*$ and it can only be useful to
study the $L^*a^*b^*$ color parameter changes
during a process. As mentioned above, ANN
is a powerful artificial intelligence technique
and a back propagation ANN with weights,
biases, a sigmoid layer, and a linear output
layer are capable of approximating any
function with a finite number of
discontinuities (Wu and Chan, 2009). In this
study, an intelligent system based on MV
and ANN was implemented for determining
L^*, a^* and b^* color parameters of sweet
cherries during ripening of the fruit. The
ripeness stages of cherry were used as a case
study due to having different colors.
Furthermore, cherry ripeness stages are
important from physiochemical point of
view. Antioxidant activity and phenolic
compounds, possibly correlated with color
changes, vary constantly during ripening of
cherry, therefore, determination of cherry
ripeness stages can be very useful (Taghadomi-Saberi et al., 2013).

MATERIALS AND METHODS

Samples Preparation

Takdaneh cherry samples were obtained from a field located in Shahrestanak, Alborz, Iran and transported to the Agricultural Machinery Department, University of Tehran. The fruits were stored in a refrigerator after detaching their stems. Fruits in different ripeness stages were chosen by visual inspection and color chart (Figure 1). Based on visual inspection (color and size), a panel of researchers separated fruits into ripeness stages (Polder et al., 2003; Serrano et al., 2005; Fu et al., 2011; Taghadomi-Saberi et al., 2013). More specifically, these stages coincided with 12, 10, 9, 7, and 7 days intervals from each other.

Color Measurement

The color measurement setup consisted of CCD camera (PROLINE UK, Model 565s with 510 by 492 pixel resolutions, London, United Kingdom), capture card (WinFast DV2000 with a 320Hx240V resolution), 2 fluorescent tubes around camera as lighting system providing uniform light and eliminating shadow images of fruits, and a personal computer. The camera was mounted 10 cm above the white background (white color has good and acceptable contrast with cherries) and powered by a 24V power supply. The light source and camera were mounted on a frame and were attached to the measurement table. The whole system was covered by a tarpaulin to omit the effects of surrounding lights. Captured signals by the camera were transferred to the computer through the video capture card, digitized and stored on the computer into RGB coordinates for further analysis (Omid et al., 2010a) (Figure 2).

Using the aforementioned setup, images of sweet cherries were taken and their color values were measured by a KONICA MINOLTA CR-403 Chroma meter made in Japan. To assess the system performance in different ranges of colors, 12 colored cards were used with different colors proportional to cherry colors during ripeness period (Figure 3). True color values of each card were measured by means of Chroma meter, then, image of each card was taken with our setup for calibration purposes.

Cherry Fruit Segmentation

When the fruit is well contrasted against the background, fruit localization could be undertaken by classical supervised or
unsupervised threshold techniques (Fu et al., 2011). The fruit area was segmented from the background with the thresholding and the Otsu’s algorithm techniques (Otsu, 1979). The saturation parameter, S in HSV color space, was very effective in segmenting the cherry from the background, although being a non-linear combination of the red, green, and blue values, it required more computation. It was found that a simple thresholding was not enough because of different colors of cherries in different ripeness stages and, possibly, because of noises due to shadows. Accordingly, different thresholding values were used at different stages. The thresholding value for each stage was chosen based on the average of R and G channels of cherry images (Table 1).

Conversion of RGB Color Values to \(L^* \), \(a^* \) and \(b^* \)

The result of segmentation was an image containing one cherry. From each cherry, a set of features was extracted to describe the sample. In image processing problems, many different features have been developed and used. The feature analyses of cherry include extraction of color features. In this study, 37 features common in this field were extracted and applied (Venora et al., 2009; Mollazade et al., 2012). These applied features are listed in Table 2.

In order to improve the performance of the system and have a sufficient feature vector, it seemed necessary to find a way for reducing the dimension of the input vector and discarding unimportant data from the feature vector and therewith accelerate the process. An effective procedure to reduce the dimension of the input vector is using PCA (Omid et al., 2010b). Accordingly, the resulting data were subjected to PCA. We used MATLAB software and assigned 0.02 to maximum fraction of variance for removed rows. PCA processes matrices using principal component analysis so that each row is uncorrelated; the rows are in the order of the amount they contribute to total variation. The rows whose contribution to total variation was less than maximum fraction (0.02) were removed. After PCA process, seven PCs were selected, i.e. RGB attributes abstracted into seven elements. This means that by using PCA, a 77.42% reduction in input volume was achieved.

Table 1. The thresholding value for each stage based on the average of R and G channels of cherry image.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Threshold value</th>
<th>Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (R > 206)</td>
<td>(S > 0.2) and (H < 0.2)</td>
<td>4</td>
</tr>
<tr>
<td>190 (<) Mean (R < 206) and Mean (G > 195)</td>
<td>(S > 0.13)</td>
<td>3 , 4</td>
</tr>
<tr>
<td>190 (<) Mean (R < 206) and Mean (G < 195)</td>
<td>(S > 0.25)</td>
<td>2 , 3</td>
</tr>
<tr>
<td>180 (<) Mean (R < 190) and Mean (G < 190)</td>
<td>(S > 0.3)</td>
<td>2 , 6</td>
</tr>
<tr>
<td>Otherwise</td>
<td>(V^* < 0.62)</td>
<td>1 , 5</td>
</tr>
</tbody>
</table>

\(R \) and \(G \) are the first and second channels of RGB images, respectively. \(H \), \(S \) and \(V \) are the first, second and third channels of HSV images, respectively.
Table 2. Available features measured by image analysis for each cherry.

<table>
<thead>
<tr>
<th>F_no</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>$r_m = \text{Mean}(R^a)$</td>
</tr>
<tr>
<td>4-6</td>
<td>$t_1 = \frac{R}{R+G+B}$</td>
</tr>
<tr>
<td>7-9</td>
<td>$r _ g = R - G$</td>
</tr>
<tr>
<td>10-12</td>
<td>$v _ r = \text{Var}(R)$</td>
</tr>
<tr>
<td>13-15</td>
<td>$\text{Skew} _ r = \text{Skewness}(R)$</td>
</tr>
<tr>
<td>16-18</td>
<td>$\text{Kor} _ r = \text{Kurtosis}(R)$</td>
</tr>
<tr>
<td>19-21</td>
<td>$m _ r _ g = \text{Mean}(r _ g)$</td>
</tr>
<tr>
<td>22-24</td>
<td>$v _ r _ g = \text{Var}(r _ g)$</td>
</tr>
<tr>
<td>25-27</td>
<td>$\text{Skew} _ 1 _ r = \text{Skewness}(r _ 1 _ g)$</td>
</tr>
<tr>
<td>28-30</td>
<td>$\text{Kor} _ 1 _ r = \text{Kurtosis}(r _ 1 _ g)$</td>
</tr>
<tr>
<td>31-33</td>
<td>$\text{Skew} _ 2 _ r = \text{Skewness}(r _ 2 _ g)$</td>
</tr>
<tr>
<td>34-36</td>
<td>$\text{Kor} _ 2 _ r = \text{Kurtosis}(r _ 2 _ g)$</td>
</tr>
<tr>
<td>37</td>
<td>$\text{The number of pixels}$</td>
</tr>
</tbody>
</table>

a R, G and B are the first, second and third channels of RGB images, respectively.

These features were then fed to ANN models as input vector.

Artificial Neural Networks Modeling

In this research, ANN as implemented in MATLAB was used for modeling the relationship between $L^*a^*b^*$ values measured by means of the Chroma meter and color characteristics extracted from the images of cherries. Levenberg-Marquardt (LM) algorithm and "trainbr" function was used to train the networks. The "trainbr" is a network training function that updates the weight and bias values according to LM optimization. It minimizes a combination of squared errors and weights, and then determines the correct combination so as to produce a network that generalizes well. The process is called Bayesian Regularization (BR), hence the name "trainbr" to describe this process.

Image analysis routines were integrated into a software programmed in MATLAB that converted the RGB color of the cherry images into $L^*a^*b^*$ units. In this way, the color of cherries could be calculated in $L^*a^*b^*$ units over the whole fruit pixels shown in the images.

To evaluate the performance of ANN, the L^*, a^* and b^* parameters were determined by use of MATLAB command for conversion from RGB to $L^*a^*b^*$ color space.

Accuracy Assessment and Calibration

Three widely used statistical parameters (Taghadomi-Saberi et al., 2013) including mean absolute error [MAE, Equation (1)], mean square error [MSE, Equation (2)], and mean absolute percentage error [MAPE, Equation (3)] were used for measurement of accuracy and differences between the values achieved by MV setup (y_0) and the actual color values (y_p) achieved by Chroma meter for 'n' samples:

$$MAE_y = \frac{\sum_{i=1}^{n} |y_0 - y_p|}{n} \quad (1)$$

$$MSE_y = \frac{\sum_{i=1}^{n} (y_0 - y_p)^2}{n} \quad (2)$$
\[
MAPE_y = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{|y_o - y_P|}{y_o} \right) \times 100 \%
\]

(3)

RESULTS AND DISCUSSION

At first, data were divided into two categories: 31 samples (approximately 89%) for training and four samples (approximately 11%) for testing. To have better results, the data were initially normalized. In order to normalize the data, the mean was mapped to zero and deviation to one. Several ANNs were designed, trained, and generalized using the MATLAB Neural network Toolbox. A back propagation network with weights, biases, a sigmoid layer, and a linear output layer are capable of approximating any function with a finite number of discontinuities (Wu and Chan, 2009). Thus, back propagation algorithm was chosen to build the prediction models. The results of trial and error showed that two-hidden layer models were generally better than the others, so these networks were considered further. The results obtained from the six models having one or two hidden layers and their characteristics are illustrated in Table 3. Among these, the best performance, without overtraining, was achieved with a back propagation neural network that used "trainbr" as training function and with 14 neurons in the first hidden layer and 11 in the second one, with both layers using "hyperbolic tangent sigmoid" as their transfer function (Figure 4). This two-hidden-layer network has 7-14-11-3 architecture, i.e. the best model consisted of an input layer with seven input variables (7 PCs), two hidden layers with 14 and 11 neurons in each layer, and an output layer with three output variables (\(L^*, a^*\) and \(b^*\)), highlighted in Table 3. This architecture has the lowest values of \(MSE, MAE\) and \(MAPE\) for all output variables indicating that the ANN predicting \(L^*a^*b^*\) values by this model tend to follow the corresponding actual ones quite closely (Table 3).

<table>
<thead>
<tr>
<th>Color p.</th>
<th>(N_{H1})</th>
<th>(N_{H2})</th>
<th>(MSE)</th>
<th>(MAE)</th>
<th>(MAPE(%))</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L^*)</td>
<td>10</td>
<td>-</td>
<td>0.1030</td>
<td>0.1955</td>
<td>0.0044</td>
<td>0.9996</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-</td>
<td>0.0356</td>
<td>0.1313</td>
<td>0.0031</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>0.0252</td>
<td>0.1003</td>
<td>0.0023</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8</td>
<td>0.0420</td>
<td>0.1287</td>
<td>0.0030</td>
<td>0.9998</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8</td>
<td>0.0014</td>
<td>0.0250</td>
<td>0.0006</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>11</td>
<td>0.0006</td>
<td>0.0177</td>
<td>0.0004</td>
<td>0.9999</td>
</tr>
<tr>
<td>(a^*)</td>
<td>10</td>
<td>-</td>
<td>0.0460</td>
<td>0.1612</td>
<td>0.0136</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-</td>
<td>0.0297</td>
<td>0.1341</td>
<td>0.0074</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>0.0340</td>
<td>0.1560</td>
<td>0.0113</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8</td>
<td>0.0288</td>
<td>0.1233</td>
<td>0.0073</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8</td>
<td>0.0023</td>
<td>0.0343</td>
<td>0.0021</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>11</td>
<td>0.0015</td>
<td>0.0258</td>
<td>0.0013</td>
<td>0.9999</td>
</tr>
<tr>
<td>(b^*)</td>
<td>10</td>
<td>-</td>
<td>0.0265</td>
<td>0.1205</td>
<td>0.0101</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-</td>
<td>0.0213</td>
<td>0.1070</td>
<td>0.0125</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>0.0135</td>
<td>0.0850</td>
<td>0.0086</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8</td>
<td>0.0161</td>
<td>0.0849</td>
<td>0.0073</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8</td>
<td>0.00082</td>
<td>0.0232</td>
<td>0.0027</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>11</td>
<td>0.0005</td>
<td>0.0165</td>
<td>0.0024</td>
<td>0.9999</td>
</tr>
</tbody>
</table>

\(^a\) \(N_{Hi}\) is the number of neurons in the \(i\)th hidden layer. \(MSE, MAE, MAPE\) and \(R^2\) stand for mean square error, mean absolute error, mean absolute percentage error and coefficient of determination, respectively.
Therefore, this model (7-14-11-3) was selected as the best solution for determination of the color parameters. The obtained determination coefficient of values related to "RGB to L*a*b*" conversion command ($R^2 = 0.748$) in MATLAB image processing toolbox showed that this command could not be reliable for determining the absolute values of $L*a*b*$ parameters, and maybe just suitable for representing the changes of color parameters during a procedure.

The determination coefficients between modeled and Chroma meter color parameters were 0.9999 for L^*, a^* and b^* values (Figure 5). Evaluation using digital imaging and Photoshop software for measurement of Mazafati date fruit color parameters yielded 0.991, 0.966 and 0.987 as correlation coefficients for L^*, a^* and b^* values, respectively. Modifying the results of Photoshop, Afshari-Jouybari and Farahnaky (2011) applied five calibration methods including linear equation, polynomial equation, linear model, quadratic model, and ANN. They concluded that ANN was the most resilient method among others to follow the real values of color parameters. In comparison with previous researches on determining these color parameters (Kılıç et al., 2007; Afshari-Jouybari and Farahnaky, 2011), the results of the present study show that using two-hidden-layers ANN and MATLAB software is remarkably easier than Photoshop for image processing, and even a better improvement can be achieved. ANN is more reliable in comparison with not only the basic modifiers such as polynomial equation, but also the advanced techniques such as ANFIS in some cases. Taghadomi-Saber et al. (2014) concluded that ANN outperformed ANFIS for estimating antioxidant activity and anthocyanin content of sweet cherry. Mollazade et al. (2012) applied four different data mining (DM) techniques, among which a 7-6-4 ANN had the highest correlation coefficient for grading raisins. There also exists a wide range of successful applications of various DM techniques, especially ANNs, in the food industry. Generally, our system can be used for determination of color parameters at a wide range of L^*, a^* and b^* and it can simulate
Determination of Cherry Color Parameters

Figure 5. Correlation between L^* (a), a^* (b) and b^* (c) values of Chroma meter and predicted values.

Chroma meter performance well with a very low cost CCD camera.

Color parameters changes of cherry fruits during ripening are presented in Figure 6. L^* and b^* parameters decreased during ripeness of cherries and a^* increased at first (up to stage "c") and then decreased. Serrano et al. (2005) reported similar results for evolution of fruit skin color parameters (L^*, a^*, and b^*) over the developmental stages of sweet cherry. Physiologically, at red stage, cherry fruit is mature and reaches its maximum weight and size. At stage "d", fruit ripening starts, its color changes from red to black and its texture becomes soft. Many reports have been published on the loss of fruit firmness during ripening. They chiefly concern changes in cell wall components and their enzymatic breakdown (Huber, 1983). The appearance, during ripening, of pectolytic enzymes, such as pectinesterase and polygalacturonase, is often related to softening (Fils-Lycaon and Buret, 1990). As firmness decreases during maturity, pectin content increases. Actually, the pectins soluble in water (WSP) and in oxalate (OSP) increase, while those soluble in hydrochloric acid (HSP) decrease.

CONCLUSIONS

In this study, the color parameters L^*, a^* and b^* of sweet cherries were determined by use of ANN assisted MV system under controlled conditions (illumination, distance between camera and objects, including cherries and color cards, camera angle, and light source) using MATLAB software. By using thresholding technique and Otsu’s algorithm, the cherries at different stages of ripeness were segmented successfully. ANN with 7-14-11-3 architecture had the best results ($R^2= 0.9999$) for modeling $L^*a^*b^*$ color parameters of sweet cherry during ripening process. Evaluation of Chroma meter and modeled $L^*a^*b^*$ values showed that this system could be used for determination of absolute color values for food materials. Accuracy of this system was comparable with the available commercial colorimetric instruments. However, low cost of this system makes it more useful.

The color measuring technique discussed in this study consisted of a CCD camera for image acquisition, fluorescent illuminants,
Figure 6. Color parameter changes during ripeness stages.

capture card and MATLAB software for image analysis and has been used to provide a more versatile way to measure the color of many foods more than the traditional expensive color-measuring instruments. Overall, the method presented in this study can be extended for evaluating $L^*a^*b^*$ in food colorimetry. By using this model and previous researches on the chemical content of cherries during ripening (e.g., anthocyanin content), extracting chemical features without destructive experiment is possible.

ACKNOWLEDGEMENTS

The financial support provided by the University of Tehran, Iran, is gratefully acknowledged.

REFERENCES

Determination of Cherry Color Parameters

تفیین پارامترهای رنگی گیلاس طی مراحل رسیدگی با استفاده از تکنیک شبکه های عصبی مصنوعی و پردازش تصویر

چکیده

بين كالاس هاي مختلف ویژگي های فيزيكي محصولات غذايي، رنگ مهم ترين ویژگي يکي برای ارزیابي كيفيت است. مصرف كنندگان تعامل دارند كه رنگ را به كيفيت ارتباط وقی. از رنگ با ارزیابي هاي كيي و سيايي محصولات غذایي مهم است. در این مطالعه روشی ارزان قيمت برای پيش بيني پارامترهای رنگی گیلاس با استفاده از تکنیک های پردازش تصویر و شبكه عصبی مصنوعی ارائه شده است. همچنین استفاده شده در این مطالعه شاخص يک دورين CCD برای تصوير دارد و كمي افزار مدل込んだ شبکه عصبی و پردازش تصویر مورد به منظور ارزیابي اين روش، تغييرات رنگ گيلاس طي مراحل رسيدگي مورد بررسی قرار گرفت. پس از طراحی، آموزش و توليد شبکه های عصبی متعادل با استفاده از الگوريتيم لورنگ- مارکوارت، در نهایت شبکه اي با تولودي 3-11-14-7 به عنوان شبکه بهينه انتخاب شد. اين شبکه داراي ضريب تين 9999* b* و a* L* با دست آمده از كروماتمر و سامانه مانیلیاني مورد بررسی بود. پارامترهای طي مراحل رسيدگي روون كايش نيي نشان دادند كه كدام a* L* و b* با ابديت آزایش و مس كايش مي پاف. ارزیابي مقدار L* و a* L* و b* ميكن استفاده قابل اطلاعاتي از اين سامانه را برای تخمین مقدار رنگي محصولات غذايي با همي يكي در درين مقاله با كروماتمر نشان داد.