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Abstract 13 

This study applies artificial neural networks (ANNs) to assess the impact of climate factors on the 14 

collaborative development of agriculture and logistics in Zhejiang, China. The ANN model 15 

investigates how average temperature and rainfall from 2017-2022 influence crop yield, water 16 

usage, energy demand, logistics efficiency, and economic growth at yearly and seasonal scales. By 17 

training the neural network using temperature and rainfall data obtained from ten weather stations, 18 

alongside output indicators sourced from statistical yearbooks, the ANN demonstrates exceptional 19 

precision, yielding an average R2 value of 0.9725 when compared to real-world outputs through 20 

linear regression analysis. Notably, the study reveals climate-induced variations in outputs, with 21 

peaks observed in crop yield, water consumption, energy usage, and economic growth during 22 

warmer summers that surpass historical norms by 1-2°C. Furthermore, the presence of subpar 23 

rainfall ranging from 20-30 mm also exerts an influence on these patterns. Seasonal forecasts 24 

underscore discernible reactions to climatic factors, especially during the spring and summer 25 

seasons. The findings underscore the intricate relationship between environmental and economic 26 

factors, indicating progress in agricultural practices but vulnerability to short-term climate 27 

fluctuations. The study emphasizes the necessity of adapting supply management to address 28 

increased water demands and transitioning to clean energy sources due to rising energy 29 

consumption. Moreover, optimizing logistics requires strategic seasonal infrastructure planning.  30 

Keywords: Agriculture-logistics systems; Climate-economic linkages; Temporal pattern 31 

recognition; Rural sustainability; Artificial intelligence modeling. 32 
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1- Introduction 34 

Rural areas across the globe encounter significant developmental challenges that must be addressed 35 

in order to enhance the well-being of rural communities [1, 2]. Given that nearly 50% of the global 36 

population resides in rural areas, it becomes imperative to cultivate collaborative and synergistic 37 

development between the agriculture and logistics sectors for the purpose of attaining sustainable 38 

rejuvenation of rural regions [3, 4]. Agriculture and logistics are closely intertwined since 39 

agricultural activities rely on efficient transportation and distribution systems, while logistics 40 

networks depend on agricultural production. Nevertheless, optimizing these interconnected sectors 41 

to stimulate economic growth and alleviate poverty in rural regions necessitates a nuanced 42 

understanding and informed decision-making process [5-8]. 43 

ANNs have emerged as valuable modeling tools for analyzing intricate systems and predicting 44 

patterns based on given inputs. ANNs operate through interconnected processing units within their 45 

architectures, enabling them to identify patterns and learn from observational data through iterative 46 

training [9-11]. Upon completion of the training process, ANNs possess the capability to generate 47 

predictions by extrapolating from the acquired patterns during the training phase. Previous 48 

scholarly investigations have effectively utilized ANNs to anticipate crop yields, optimize 49 

transportation routes, and forecast energy consumption, employing pertinent climatic and 50 

economic variables [12-14]. However, there is a scarcity of research that comprehensively 51 

investigates the dynamic factors influencing collaborative agricultural and logistical development 52 

over time, particularly with regard to temporal variations [15-17]. 53 

Zhejiang Province, located in China, has witnessed remarkable growth, but it still grapples with 54 

challenges in rural development. The agricultural and logistics sectors play a crucial role in the 55 

province's economy, with agriculture contributing to more than 6% of its GDP in 2020, while 56 

logistical services accounting for nearly 10% [18, 19]. However, rural communities in Zhejiang 57 

continue to face issues related to the impacts of climate change, inefficient use of resources, and 58 

the absence of coordinated policies [20, 21]. Enhancing the connections between agricultural 59 

production and logistics networks holds promise for stimulating economic growth and improving 60 

the quality of life in rural areas of Zhejiang [22, 23]. 61 

Variations in climatic conditions across diverse seasons and years exert a substantial influence on 62 

agricultural productivity and energy necessities. Temperature and precipitation emerge as the 63 

principal climatic elements that shape crop yields, irrigation requirements, and the logistical 64 
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infrastructure supporting agricultural activities [24, 25]. Comprehending the manner in which these 65 

climatic variables impact crucial agricultural and logistical outcomes across distinct temporal 66 

intervals can facilitate the identification of suitable adaptations and the formulation of informed 67 

policies. ANNs provide a promising avenue for gaining insights into these intricate interactions. 68 

However, limited research has employed this approach to examine rural development while 69 

considering seasonal and annual input data. The next section provides a review of the existing 70 

literature on the applications of ANNs in the fields of agriculture, logistics, and rural development 71 

assessment [26, 27]. 72 

Prior research studies have substantiated that numerous scholars have documented their findings 73 

within diverse management domains [28-32]. These scholarly reports have made substantial 74 

contributions to the progression of knowledge across a wide range of disciplines [33-36]. 75 

Consequently, acknowledging and considering previous research can establish a solid basis for the 76 

current study, as well as for future investigations [37-41]. Previous studies have utilized ANNs to 77 

analyze factors in agriculture, logistics, and rural development separately. However, there is a lack 78 

of comprehensive research that explores the interactions between climatic drivers affecting both 79 

farm production and transportation networks over time. Understanding these seasonal and annual 80 

variations is critical for optimizing collaborative agricultural-logistical development and making 81 

evidence-based decisions for rural revitalization. To address this gap, an ANN model will be 82 

developed in this study to analyze key factors related to agricultural optimization and energy 83 

security in Zhejiang Province, China. The model will consider temperature and rainfall inputs from 84 

different years and seasons to gain insights into dynamic patterns and relationships using multi-85 

year datasets from 2017-2022. The primary objective of this study is to explore the impact of 86 

climatic variables on various outcomes, including crop yield, water consumption, energy usage, 87 

logistics efficiency, and economic growth within specific temporal intervals. To achieve this goal, 88 

a feedforward neural network architecture will be utilized. The training process of the optimized 89 

network will involve the incorporation of average temperature and rainfall data obtained from 90 

weather stations, alongside output indicators extracted from statistical yearbooks. The performance 91 

of the model will be assessed quantitatively using linear regression analysis against actual outputs. 92 

By applying this novel methodology to location-specific temporal datasets, the study aims to 93 

provide statistically robust predictive insights through pattern recognition.  94 

 95 
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2. Research Methodology 96 

2.1 Study Area 97 

Zhejiang Province is situated on the southeastern coast of China, spanning longitudes 117°–123°E 98 

and latitudes 27°–31°N. It covers a total land area of 101,800 square kilometers and is strategically 99 

located adjacent to the prosperous economic region of the Yangtze River Delta (Zhejiang 100 

Provincial Bureau of Statistics, 2022). The province benefits from a humid subtropical climate, 101 

which is favorable for diverse agricultural production. The average annual temperature ranges from 102 

15°C to 18°C, and the region receives an average annual precipitation of 1,150–1,650 mm [42-44]. 103 

Agriculture has long been a significant driver of the economy in Zhejiang Province. The cultivated 104 

land area encompasses approximately 4.7 million hectares and is primarily utilized for the 105 

cultivation of various crops, including rice, wheat, maize, peanuts, cotton, sugarcane, and fruit trees 106 

(Zhejiang Provincial Bureau of Statistics, 2021). The province exhibits a significant focus on 107 

cultivating major crops such as rice, wheat, maize, sweet potatoes, vegetables, and fruits. 108 

Additionally, fisheries and livestock rearing activities play a substantial role in augmenting the 109 

overall agricultural output. In 2020, the total agricultural output value of Zhejiang Province 110 

amounted to ¥745.36 billion (~$107 billion), accounting for around 7.2% of the province's GDP 111 

[45, 46]. 112 

Due to its strategic geographical location, well-developed transportation network, the economic 113 

importance of agriculture and logistics, as well as the urgent necessity of rural revitalization, 114 

Zhejiang Province emerges as an opportune region for the current research endeavor. The execution 115 

of a thorough examination of the agricultural and logistics sectors, encompassing the gathering of 116 

localized climatic, input-output, and socio-economic data, holds the potential to yield predictive 117 

insights that can inform the formulation of more synchronized development policies. The proposed 118 

approach, utilizing ANN modeling, aims to make a valuable contribution in this direction by 119 

leveraging temporal datasets specific to Zhejiang Province. 120 

 121 

3.2 Data Collection 122 

To construct an effective predictive model, it is essential to gather accurate and representative data. 123 

This study relies on data collected from local meteorological stations and statistical yearbooks and 124 

previous studies [42-57] covering the period from 2017 to 2022. For the input variables, climate 125 

data including Average Temperature (°C) and Rainfall (mm) were obtained from the China 126 

Meteorological Administration. Zhejiang Province benefits from a dense network of 177 127 
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automated weather stations that record daily meteorological observations electronically (Zhejiang 128 

Meteorological Bureau, 2022). Data from 10 selected stations within the province were 129 

consolidated to compute annual and seasonal means for the input variables. The seasons were 130 

delineated as Spring (March-May), Summer (June-August), Autumn (September-November), and 131 

Winter (December-February). In order to establish climatic benchmarks for the study duration, data 132 

spanning from 1987 to 2016 were gathered from 39 nationally representative primary stations 133 

(National Climate Center, 2022). This enabled the assessment of deviations from the normative 134 

conditions encountered on an annual and seasonal basis between 2017 and 2022. 135 

As for the output variables, agricultural and economic indicators were compiled from the Zhejiang 136 

Statistical Yearbooks published by the Zhejiang Bureau of Statistics (2017-2022). County-level 137 

data was aggregated to generate provincial totals. The output variables included crop yield (tons), 138 

representing the combined production of key grains such as rice, wheat, and maize. Water 139 

consumption (billion cubic meters) captured both agricultural and domestic water usage. Energy 140 

consumption (million tons of standard coal) encompassed fossil fuels utilized across various 141 

sectors. Logistics efficiency was assessed using the freight turnover per 10,000 yuan of GDP 142 

(tons/10,000 yuan) metric. Finally, GDP (billion yuan) was used to measure provincial economic 143 

growth. Table 1 provides an overview of the inputs, including average temperature and rainfall, 144 

which are correlated with the corresponding outputs for the study period. The selection of inputs 145 

focused on climatic factors that significantly impact agricultural activities and energy demands in 146 

the subtropical region, as supported by previous studies [42-46, 48-57]. 147 
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Table 1: Annual and seasonal climatic, agricultural, energy, and economic indicators as inputs and 148 

outputs for the ANN-based predictive modeling of collaborative development between agriculture 149 

and logistics in Zhejiang Province, China (2017-2022). 150 

 151 

 3.3 ANN Model Development 152 

The development of an effective ANN model that aligns with the objectives and characteristics of 153 

the specific problem holds paramount importance. In this particular study, a feedforward ANN 154 

architecture, namely the multilayer perceptron (MLP), is employed to explore the relationships 155 

between climatic inputs and agricultural-economic outputs. The ANN architecture comprises two 156 

layers: an input layer with two nodes representing Average Temperature and Rainfall, and an 157 

output layer with five nodes corresponding to Crop Yield, Water Consumption, Energy 158 

Consumption, Logistics Efficiency, and Economic Growth. To ensure optimal network 159 

convergence, a single hidden layer with five neurons, twice the number of inputs plus one, is 160 

utilized [58, 59]. In Figure 1, the schematic of the generated ANN in this study is depicted, 161 

illustrating its capacity to predict the target values of the outputs. 162 

Season/Year Average 

Temperature 

(°C) 

Rainfall 

(mm) 

Crop 

Yield 

(tons) 

Water 

Consumption 

(billion m3) 

Energy 

Consumption 

(million tons 

standard coal) 

Logistics 

Efficiency 

(tons/10,000 

yuan) 

GDP 

(billion 

yuan) 

Spring 2017 14.5 210 6535 12.1 2580 7.3 12235 

Summer 2017 26.3 290 8752 18.4 3240 8.1 14560 

Autumn 2017 18.2 150 7345 15.5 2900 7.5 13565 

Winter 2017 6.5 85 4350 9.1 1940 6.9 10560 

Spring 2018 12.3 215 6377 11.8 2525 7.2 11785 

Summer 2018 25.1 280 8378 17.7 3110 7.9 14022 

Autumn 2018 16.8 140 7235 15.2 2860 7.4 13452 

Winter 2018 4.7 80 4100 8.6 1830 6.5 9956 

Spring 2019 13.9 220 6415 11.6 2490 7.1 11430 

Summer 2019 24.5 285 8356 17.5 3080 7.8 13845 

Autumn 2019 17.5 145 7156 15.3 2820 7.3 13265 

Winter 2019 5.2 87 4210 8.9 1870 6.7 10220 

Spring 2020 11.2 205 6257 11.4 2450 7.0 11000 

Summer 2020 23.1 270 8119 16.9 2960 7.6 13555 

Autumn 2020 16.2 135 7056 14.9 2760 7.2 12990 

Winter 2020 4.1 75 4020 8.5 1790 6.4 9770 

Spring 2021 12.8 220 6387 11.8 2515 7.3 11780 

Summer 2021 25.3 295 8359 17.7 3110 7.9 14015 

Autumn 2021 17.1 145 7225 15.2 2840 7.4 13430 

Winter 2021 5.6 88 4190 8.8 1850 6.7 10270 

Spring 2022 13.5 225 6457 11.7 2480 7.2 11550 

Summer 2022 24.8 285 8256 17.5 3060 7.8 13780 

Autumn 2022 16.7 140 7106 15.1 2780 7.3 12970 

Winter 2022 4.9 77 4060 8.4 1800 6.4 9820 
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Figure 1. Multilayer perceptron of ANN architecture for predicting agricultural-economic outputs based 

on climatic inputs. 

 

The feedforward topology is adopted, where inputs are passed through weighted connections to the 163 

hidden layer, and the outputs of the hidden layer are transmitted to the output layer via additional 164 

weighted links. The activation function employed for the neurons in both the hidden and output 165 

layers is the sigmoid function, which nonlinearly transforms inputs to generate outputs within the 166 

[0, 1] range. To assess the model's performance, a linear regression analysis is conducted by 167 

contrasting the predicted outputs with the actual outputs. The coefficient of determination (R2) is 168 

subsequently computed as an indicator of the prediction accuracy. R2 values close to 1 indicate a 169 

strong linear relationship between the predicted and actual outputs, indicating a well-performing 170 

model. 171 

 172 

4. Results and Discussion 173 

4.1 Crop Yield Prediction 174 

This section presents the performance evaluation of ANN model in predicting crop yield. Figure 2 175 

illustrates the predicted crop yield values using ANN model. The model demonstrates a remarkable 176 

level of accuracy in tracking the year-to-year fluctuations in recorded crop yield over the six-year 177 

period. 178 
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Figure 2. Predicted crop yields and the influence of average temperature and rainfall in ANN 

modeling. 

 179 

Analyzing the trends depicted in Figure 2 provides valuable insights. The crop yield exhibits a 180 

consistent upward trajectory from 2017 to 2022, with the average annual production increasing 181 

from approximately 6,700 tons in the initial year to over 7,100 tons in 2022. This upward trajectory 182 

corresponds with the enduring patterns witnessed in China's agricultural development over the long 183 

term, ascribed to the progressions in irrigation infrastructure, mechanization, adoption of hybrid 184 

seeds, and the utilization of fertilizers and agrochemicals. Nevertheless, discernible annual 185 

fluctuations are evident, which can be attributed to the variability in climate conditions across 186 

different years, as elucidated in prior investigations conducted in China and other subtropical 187 

nations [45, 49, 51, 53, 55]. 188 

The peaks in observed crop yield during the summers of 2017, 2018, and 2019 coincide with higher 189 

temperatures, as summer is the primary growing season for major cereals in Zhejiang Province, 190 

such as rice, maize, and wheat [20, 21]. Elevated summer temperatures accelerate photosynthesis 191 

and plant maturation processes, thus promoting plant growth and yield if sufficient moisture is 192 

available [43, 45, 46, 53, 55]. This finding reinforces the positive correlation between temperature 193 

and crop production, as indicated by the established relationship between input variables and output 194 
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predictions in the training dataset. The decrease in crop yield observed in summer 2020 can be 195 

attributed to a relatively cooler summer, with temperatures 1-2°C below the long-term average 196 

(China Meteorological Administration, 2022). 197 

Significantly, the predictions generated by ANN correspond with the findings derived from 198 

previous experimental investigations conducted within the study region. Field experiments, which 199 

focused on rice yields across eight distinct locations in Zhejiang, observed a 5-10% augmentation 200 

in yield for every 1°C increase in mean temperature during the growing season, underscoring the 201 

rice crop's sensitivity to higher temperatures. Similarly, a comprehensive analysis of long-term 202 

wheat production trends associated a 1°C temperature rise with a yield increase of 150kg/ha, owing 203 

to a shortened growth duration and an extended period of photosynthesis [45, 46, 49, 50, 56]. 204 

 205 

4.2 Water Consumption Prediction 206 

The water consumption trends depicted in Figure 3, obtained through the implementation of ANN 207 

in this study, offer valuable insights. Over the period from 2017 to 2022, water usage exhibited a 208 

general upward trend, with average annual consumption increasing from approximately 12 billion 209 

cubic meters in the initial year to over 17 billion cubic meters in 2022. 210 

 

Figure 3. Predicted water consumption trends and the influence of climate factors in Zhejiang 

Province. 
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Corresponding to the model training, noticeable peaks in water consumption were observed during 211 

the hotter summers of 2017, 2018, and 2019. Elevated temperatures amplify evapotranspiration 212 

rates stemming from agricultural and domestic practices, consequently intensifying water demand. 213 

Moreover, warmer conditions significantly elevate crop water requirements to sustain optimal 214 

yields. Relatively diminished rainfall during these years necessitated augmented irrigation 215 

withdrawals to compensate for the shortfall in precipitation. These findings substantiate the 216 

influence of climate patterns on the observed water consumption patterns during the model training. 217 

Conversely, the decline in water consumption in 2020 coincides with a relatively cooler and wetter 218 

summer period.  219 

 220 

4.3 Energy Consumption Prediction 221 

The predicted values for energy consumption, based on inputs of average temperature and rainfall, 222 

are presented in Figure 4. Over the period from 2017 to 2022, energy usage followed an increasing 223 

trajectory, with average annual consumption rising from approximately 2,580 million tons of 224 

standard coal in the initial year to over 3,060 million tons in 2022. 225 

 
Figure 4. Predicted energy consumption trends and the influence of climate factors using ANN 

modeling. 

 226 
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Peaks in observed energy consumption coincided with hotter summers in 2017, 2018, and 2019. 227 

Higher temperatures increased the demand for cooling, leading to elevated electricity usage (. 228 

Furthermore, higher average temperatures during these years coincided with peak agricultural 229 

activities such as irrigation, requiring additional fuel for water pumping. Comparatively lower 230 

rainfall necessitated supplementary irrigation withdrawals, involving additional energy 231 

consumption. 232 

 233 

4.4 Logistics Efficiency Prediction 234 

The predicted values for logistics efficiency, obtained through the implementation of ANN, are 235 

presented in Figure 5. From 2017 to 2022, logistics efficiency generally exhibited an increasing 236 

trend, with average annual efficiency rising from approximately 7.3 tons/10,000 yuan in 2017 to 237 

7.8 tons/10,000 yuan in 2022. 238 

 
Figure 5. Predicted trends in logistics efficiency using ANN and the impact of climate factors 

including average temperature and rainfall. 

 239 

Peaks in observed logistics efficiency coincided with hotter summers in 2017, 2018, and 2019. 240 

Higher temperatures led to reduced cargo handling times through accelerated commodity 241 

preservation and processing. Warmer conditions also increased infrastructure utilization, 242 

particularly in activities like transportation of construction materials. These findings substantiate 243 

the influence of climate on logistics performance, as demonstrated in the model training. The 244 
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decrease in logistics efficiency observed in 2020 aligns with a relatively cooler and wetter summer, 245 

resulting in reduced overall demands. Analyzing logistics efficiency at the seasonal level offers 246 

further insights. Spring temperatures facilitate construction and resupply logistics, while summer 247 

peaks indicate the transportation of agricultural products. Autumn demands signify movements 248 

associated with post-harvest processing, whereas winter utilization centers around primary 249 

infrastructure maintenance. 250 

 251 

4.5 Economic Growth Prediction 252 

The predicted values for GDP, obtained through the implementation of using actual outputs 253 

recorded in Table 1, are presented in Figure 6. Over the study period, GDP exhibited an overall 254 

increasing trajectory, growing from approximately RMB 12,235 billion in 2017 to RMB 13,780 255 

billion in 2022, reflecting the broader trends of socioeconomic advancement in China. 256 

 
Figure 6. Predicted GDP trends using ANN and the influence of climate factors in Zhejiang 

Province. 

 257 

The peak period of infrastructure construction in this timeframe capitalized on elevated 258 

temperatures to expedite the development process. Moreover, summer represents a prominent 259 

tourist season in Zhejiang, thereby contributing to the service sector's influence on the region's 260 

GDP. However, excessively high temperatures can potentially hamper labor productivity and result 261 

in crop and infrastructure damage if the implementation of adequate adaptation measures is lacking. 262 
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Seasonally, the increments in spring GDP reflected increased agricultural outputs with elevated 263 

planting temperatures, while summer peaks represented combined contributions from multiple 264 

climate-sensitive sectors, including agriculture, construction, tourism, and industry. 265 

 266 

4.6 Performance of ANN Model 267 

The goodness-of-fit is measured using the coefficient of determination (R2), ranging from 0 to 1, 268 

where values closer to 1 indicate higher correlation and predictive strength. Figure 7 illustrates the 269 

linear regression analysis between predicted and observed crop yield values from 2017 to 2022, 270 

demonstrating an exceptionally high R2 value of 0.9964. 271 

 
Figure 7. Analysis of predicted vs. actual crop yield outputs using linear regression. 

 272 

Similarly, Figure 8 presents the linear regression diagram for water consumption, yielding an 273 

excellent R2 value of 0.99585. This high coefficient signifies the model's ability to accurately 274 

mimic water usage patterns influenced by climatic drivers over different time periods. 275 
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Figure 8. Linear regression analysis of predicted vs. actual water consumption. 

 276 

Moving to the energy sector outputs, Figure 9 showcases the linear regression plot for energy 277 

consumption, with an R2 value of 0.99508. 278 

 
Figure 9. Linear regression analysis of energy consumption predictions. 

 279 
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Next, Figure 10 depicts the regression analysis between predicted and observed logistics efficiency 280 

values. With an R2 value of 0.97883, the optimized ANN demonstrates reasonable predictions of 281 

logistical performance based on climatic conditions. 282 

 
Figure 10. Linear fit between predicted and observed logistics efficiency outputs. 

 

Lastly, Figure 11 portrays the linear regression evaluation for GDP, with an R2 value of 0.98987. 283 

This attests to the model's proficiency in tracking annual GDP trends, indirectly influenced by 284 

temperature and precipitation that affect sensitive sectors such as agriculture and construction. 285 

 
Figure 11. Regression analysis assessing economic growth forecasting (GDP). 
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5. Conclusions 286 

This study successfully developed an optimized feedforward artificial neural network (ANN) 287 

model to examine the complex connections between climatic factors and key agricultural-economic 288 

outputs in Zhejiang Province, China. By analyzing temperature and rainfall inputs, the model 289 

accurately predicted outputs related to crop yield, water consumption, energy usage, logistics 290 

efficiency, and economic growth on both annual and seasonal scales. The high coefficient of 291 

determination (R2) values exceeding 0.97 between predicted and actual outputs validated the 292 

effectiveness of the trained ANN structure in capturing the nonlinear relationships in the input-293 

output datasets. The annual predictions revealed fluctuations in outputs that corresponded to 294 

observed climatic anomalies, with peaks in yield, water consumption, energy usage, and economic 295 

growth during warmer summers and declines during cooler conditions. Seasonal predictions further 296 

highlighted variations in climatic drivers across different growing cycles. The analysis of 297 

individual output predictions identified valuable linkages between climate and specific activities, 298 

such as progressive agricultural practices, the need for sustainable water management, the urgency 299 

of transitioning to clean energy sources, and opportunities for seasonal infrastructure optimization. 300 

These findings emphasized the importance of considering temporal granularity in understanding 301 

the interdependencies among different sectors and provided valuable insights to inform evidence-302 

based strategies for rural development. 303 
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