Modeling of Solar Radiation Potential in Iran Using Artificial Neural Networks

Authors
Department of Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University (T.M.U.), Tehran, Iran. P.O. Box 14115-111.
Abstract
Solar radiation data play an important role in solar energy relevant researches. These data are not available for some locations due to the absence of the meteorological stations. Therefore, solar radiation data have to be predicted by using solar radiation estimation models. This study presents an integrated Artificial Neural Network (ANN) approach for estimating solar radiation potential over Iran based on geographical and meteorological data. For this aim, the measured data of 31 stations spread over Iran were used to train Multi-Layer Perceptron (MLP) neural networks with different input variables, and solar radiation was the output. The accuracy of the models was evaluated using the statistical indicators of Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Correlation Coefficient (R); hence, the best model in each category was identified. The Stepwise Multi NonLinear Regression (MNLR) method was used to determine the most suitable input variables. The results obtained from the ANN models were compared with the measured data. The MAPE and RMSE were found to be 2.98% and 0.0224, respectively. The obtained R value was about 99.85% for the testing data set. The results testify to the generalization capability of the ANN model and its excellent ability to predict solar radiation in Iran.

Keywords


1. Adaramola, Muyiwa S. 2012. Estimating Global Solar Radiation Using Common Meteorological Data in Akure, Nigeria. Renew. Ener. 47: 38–44. doi:10.1016/j.renene.2012.04.005.
2. Al-Alawi, S. M. and Al-Hinai, H. A. 1998. An ANN-Based Approach for Predicting Global Radiation in Locations with No Direct Measurement Instrumentation. Renew. Ener., 14(1): 199–204.
3. Almorox, J., Hontoria, C. and Benito, M. 2011. Models for Obtaining Daily Global Solar Radiation with Measured Air Temperature Data in Madrid (Spain). Appl. Ener., 88(5): 1703–9. doi:10.1016/j.apenergy.2010.11.003.
4. Angstrom, A. 2007. Solar and Terrestrial Radiation. Report to the International Commission for Solar Research on Actinometric Investigations of Solar and Atmospheric Radiation. Quarterly J. Royal Meteorological Soc., 50(210): 121–26. doi:10.1002/qj.49705021008.
5. Azadeh, A., Maghsoudi, A. and Sohrabkhani, S.2009. An Integrated Artificial Neural Networks Approach for Predicting Global Radiation. Ener. Convers. Manage., 50(6): 1497–1505. doi:10.1016/j.enconman.2009.02.019.
6. Bahrami, M. and Abbaszadeh, P. 2013. An Overview of Renewable Energies in Iran. Renew. Sust. Ener. Rev., 24: 198–208. doi:10.1016/j.rser.2013.03.043.
7. Behrang, M. A., Assareh, E., Ghanbarzadeh, A. and Noghrehabadi, A. R. 2010. The Potential of Different Artificial Neural Network (ANN) Techniques in Daily Global Solar Radiation Modeling Based on Meteorological Data. Solar Ener., 84(8): 1468–80. doi:10.1016/j.solener.2010.05.009.
8. Benghanem, M., Mellit, A. and Alamri, S. N. 2009. ANN-based Modelling and Estimation of Daily Global Solar Radiation Data: A Case Study. Ener. Convers. Manage., 50(7): 1644–55. doi:10.1016/j.enconman.2009.03.035.
9. Bilgili, M. and Sahin, B. 2010. Comparative Analysis of Regression and Artificial Neural Network Models for Wind Speed Prediction. Meteorology Atmospheric Phys., 10(1): 61–72.
10. Bilgili, M. 2010. Prediction of Soil Temperature Using Regression and Artificial Neural Network Models. Meteorology Atmospheric Phys., 110(1-2): 59–70. doi:10.1007/s00703-010-0104-x.
11. Bilgili, M., and Ozgoren, M. 2011. Daily Total Global Solar Radiation Modeling from Several Meteorological Data. Meteorology Atmospheric Phys., 112(3-4): 125–38. doi:10.1007/s00703-011-0137-9.
12. Chen, S. X., Gooi, H. B. and Wang, M. Q. 2013. Solar Radiation Forecast Based on Fuzzy Logic and Neural Networks. Renew. Ener., 60: 195–201. doi:10.1016/j.renene.2013.05.011.
13. Dinpashoh, Y., Fakheri-Fard, A., Moghaddam, M., Jahanbakhsh, S. and Mirnia, M. 2004. Selection of Variables for the Purpose of Regionalization of Iran’s Precipitation Climate Using Multivariate Methods. J. Hydrol., 297(1-4): 109–23. doi:10.1016/j.jhydrol.2004.04.009.
14. Dorvlo, Atsu S.S., Joseph a. Jervase, and Ali Al-Lawati. (Consider revisiing) 2002. Solar Radiation Estimation Using Artificial Neural Networks. Appl. Ener., 71(4): 307–19. doi:10.1016/S0306-2619(02)00016-8.
15. Elminir, Hamdy K., Yosry a. Azzam, and Farag I. Younes. (Consider revisiing) 2007. Prediction of Hourly and Daily Diffuse Fraction Using Neural Network, as Compared to Linear Regression Models. Ener., 32(8): 1513–23. doi:10.1016/j.energy.2006.10.010.
16. Ziaei Asl, S. F, Karami, A., Ashari, Gh., Behrang, A., Assareh, A. and Hedayat, N. 2011. Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks. 55: 740–42. doi:10.1016/j.energy.2011.02.048.K.
17. Gandhidasan, P. and Mohandes, M. A. 2011. Artificial Neural Network Analysis of Liquid Desiccant Dehumidification System. Ener., 36(2): 1180–86. doi:10.1016/j.energy.2010.11.030.
18. Gorjian, Sh., Tavakkoli Hashjin, T. and Ghobadian, B. 2012. Estimation of Mean Monthly and Hourly Global Solar Radiation on Surfaces Tracking the Sun: Case Study: Tehran. In Second Iranian Conference on Renewable Energy and Distributed Generation, Tehran, Iran, IEEE: 172–77. doi:10.1109/ICREDG.2012.6190457.
19. Gorjian, Sh., Tavakkoli Hashjin, T., Ghobadian, B. and Banakar, A. 2013. Modeling Global Solar Radiation over Iran Based on Meteorological Data Using ANN Technique. In 11th Iranian Conference on Intelligent Systems (ICIS2013), Tehran, Iran, 9: 1–8.
20. Hasni, A., Sehli, A., Draoui, B., Bassou, A. and BAmieur, B. 2012. Estimating Global Solar Radiation Using Artificial Neural Network and Climate Data in the South-Western Region of Algeria. Energy Procedia, 18 January, PP. 531–37. doi:10.1016/j.egypro.2012.05.064.
21. Haykin, S S. 1994. Neural Networks: A Comprehensive Foundation. Macmillan. http://books.google.com/books?id=PSAPAQAAMAAJ.
22. Hejase, H. A. N., Al-Shamisi, M. H. and Assi, A. H. 2014. Modeling of Global Horizontal Irradiance in the United Arab Emirates with Artificial Neural Networks. Ener., 77: 542–52. doi:10.1016/j.energy.2014.09.064.
23. Jacovides, C. P., Tymvios, F. S., Assimakopoulos, V. D. and Kaltsounides, N. A. 2006. Comparative Study of Various Correlations in Estimating Hourly Diffuse Fraction of Global Solar Radiation. Renew. Ener., 31(15): 2492–2504. doi:10.1016/j.renene.2005.11.009.
24. Jiang, Y. 2008. Prediction of Monthly Mean Daily Diffuse Solar Radiation Using Artificial Neural Networks and Comparison with Other Empirical Models. Ener. Policy, 36(10): 3833–37. doi:10.1016/j.enpol.2008.06.030.
25. Jiang, Y. 2009. Computation of Monthly Mean Daily Global Solar Radiation in China Using Artificial Neural Networks and Comparison with Other Empirical Models. Ener., 34(9): 1276–83. doi:10.1016/j.energy.2009.05.009.
26. Kaushika, N. D., Tomar, R. K. and Kaushik, S. C. 2014. Artificial Neural Network Model Based on Interrelationship of Direct, Diffuse and Global Solar Radiations.”
27. Solar Ener., 103: 327–42. doi:10.1016/j.solener.2014.02.015.
28. Khalil, S. A. and Fathy, A. M. 2008. An Empirical Method for Estimating Global Solar Radiation over Egypt. Acta Polytechnica, 48(5): 2–7.
29. Tamer, Kh., Mohamed, A. and Sopian, K. 2012. A Review of Solar Energy Modeling Techniques. Renew. Sust. Ener. Rev., 16(5): 2864–69. doi:10.1016/j.rser.2012.01.064.
30. Koca, A., Oztop, H. F., Varol, Y. and Ozmen Koca, G. 2011. Estimation of Solar Radiation Using Artificial Neural Networks with Different Input Parameters for Mediterranean Region of Anatolia in Turkey. Expert Sys. Appl., 38(7): 8756–62. doi:10.1016/j.eswa.2011.01.085.
31. Li, M. -F., Liu, H. -B. Guo, P. -T. and Wu, W. 2010. Estimation of Daily Solar Radiation from Routinely Observed Meteorological Data in Chongqing, China. Ener. Convers. Manage., 51(12): 2575–79. doi:10.1016/j.enconman.2010.05.021.
32. Mirzahosseini, A. H. and Taheri, T. 2012. Environmental, Technical and Financial Feasibility Study of Solar Power Plants by RETScreen, according to the Targeting of Energy Subsidies in Iran. Renew. Sust. Ener. Rev., 16(5): 2806–11. doi:10.1016/j.rser.2012.01.066.
33. Mohandes, M., Balghonaim, A., Kassas, M., Rehman, S. and Halawani, T. O. 2000. Use of Radial Basis Functions for Estimating Monthly Mean Daily Solar Radiation. Solar Ener., 68(2): 161–68.
34. Mohandes, M., Rehman, S. and Halawani, T. O. 1998. Estimation of Global Solar Radiation Using Artificial Neural Networks. Renew. Ener., 14(1): 179–84.
35. Moini, S., Javadi, Sh. and Dehghan Manshadi, M. 2011. Feasibility Study of Solar Energy in Iran and Preparing Radiation Atlas. In Recent Advances in Environment, Energy Systems and Naval Science, Barcelona, Spain, PP. 258–64/.
36. Moreno, A., Gilabert, M. A. and Martínez, B. 2011. Mapping Daily Global Solar Irradiation over Spain: A Comparative Study of Selected Approaches. Solar Ener., 85(9): 2072–84. doi:10.1016/j.solener.2011.05.017.
37. Nguyen, B. T. and Pryor, T. L. 1997. The Relationship between Global Solar Radiation and Sunshine Duration in Vietnam. Renew. Ener., 11(1): 47–60.
38. Ouammi, A., Zejli, D., Dagdougui, H. and Benchrifa, R. 2012. Artificial Neural Network Analysis of Moroccan Solar Potential. Renew. Sust. Ener. Rev., 16(7): 4876–89. doi:10.1016/j.rser.2012.03.071.
39. Ozgoren, M., Bilgili, M. and Sahin, B. 2012. Estimation of Global Solar Radiation Using ANN over Turkey. Expert Sys. Appl. 39(5): 5043–51. doi:10.1016/j.eswa.2011.11.036.
40. Piri, J. and Kisi, O. 2015. Modelling Solar Radiation Reached to the Earth Using ANFIS, NN-ARX, and Empirical Models (Case Studies: Zahedan and Bojnurd Stations). J. Atmospheric Solar-Terrestrial Phys., 123: 39–47. doi:10.1016/j.jastp.2014.12.006.
41. Rahimikhoob, A. 2010. Estimating Global Solar Radiation Using Artificial Neural Network and Air Temperature Data in a Semi-Arid Environment. Renew. Ener., 35(9): 2131–35. doi:10.1016/j.renene.2010.01.029.
42. Reddy, K. S. and Ranjan, M. 2003. Solar Resource Estimation Using Artificial Neural Networks and Comparison with Other Correlation Models. Ener. Convers. Manage., 44(15): 2519–30. doi:10.1016/S0196-8904(03)00009-8.
43. Shafiqur, R. and Mohandes, M. 2008. Artificial Neural Network Estimation of Global Solar Radiation Using Air Temperature and Relative Humidity. Ener. Policy, 36(2): 571–76. doi:10.1016/j.enpol.2007.09.033.
44. Rumbayan, M., Abudureyimu, A. and Nagasaka, K. 2012. Mapping of Solar Energy Potential in Indonesia Using Artificial Neural Network and Geographical Information System. Renew. Sust. Ener. Rev., 16(3): 1437–49. doi:10.1016/j.rser.2011.11.024.
45. Şenkal, O. 2010. Modeling of Solar Radiation Using Remote Sensing and Artificial Neural Network in Turkey. Ener., 35(12): 4795–4801. doi:10.1016/j.energy.2010.09.009.
46. Şenkal, O. and Kuleli, T. 2009. Estimation of Solar Radiation over Turkey Using Artificial Neural Network and Satellite Data. Appl. Ener., 86(7-8): 1222–28. doi:10.1016/j.apenergy.2008.06.003.
47. Soares, J., Oliveira, A. P., Zlata Božnar, M., Mlakar, P., Escobedo, J. F. and Machado, A. J. 2004. Modeling Hourly Diffuse Solar-Radiation in the City of São Paulo Using a Neural-Network Technique. Appl. Ener., 79(2): 201–14. doi:10.1016/j.apenergy.2003.11.004.
48. Soltani, S., Saboohi, R. and Yaghmaei, L. 2011. Rainfall and Rainy Days Trend in Iran. Climatic Change, 110(1-2): 187–213. doi:10.1007/s10584-011-0146-1.
49. Sözen, A., Arcaklıoğlu, E., Özalp, M. and Çağlar, N. 2005. Forecasting Based on Neural Network Approach of Solar Potential in Turkey. Renew. Ener., 30(7): 1075–90.
50. Sözen, A., Arcaklioğlu, E., Özalp, M. and Kanit, E. G. 2005. Solar-energy Potential in Turkey. Appl. Ener., 80(4): 367–81.
51. Adnan, S., Arcaklioğlu, E. and Özalp, M. 2004. Estimation of Solar Potential in Turkey by Artificial Neural Networks Using Meteorological and Geographical Data. Ener. Convers. Manage., 45(18-19): 3033–52. doi:10.1016/j.enconman.2003.12.020.
52. Tymvios, F. S. S., Jacovides, C. P. P., Michaelides, S. C. C. and Scouteli, C. 2005. Comparative Study of Ångström’s and Artificial Neural Networks’ Methodologies in Estimating Global Solar Radiation. Solar Ener., 78(6): 752–62. doi:10.1016/j.solener.2004.09.007.
53. Wang, Z., Wang, F. and Su, Sh. 2011. Solar Irradiance Short-term Prediction Model Based on BP Neural Network. Ener. Procedia, 12: 488–94. doi:10.1016/j.egypro.2011.10.065.
54. Yacef, R., Benghanem, M. and Mellit, A. 2012. Prediction of Daily Global Solar Irradiation Data Using Bayesian Neural Network: A Comparative Study. Renew. Ener., 48: 146–54. doi:10.1016/j.renene.2012.04.036.
55. Yaghoubi, M. A. and Sabzevari, A. 1993. Solar Radiation for Shiraz, Iran: A Comparative Study for Two Periods.” Renew. Ener., doi:10.1016/0960-1481(93)90079-V.