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ABSTRACT 

The reflectance spectrum of green leaves is considerably affected by their biochemical 

and biophysical properties. It is possible to extract biochemical information from a 

continuous vegetation spectrum produced using hyperspectral sensors. The numerous 

absorption features present in the vegetation spectrum carry a considerable amount of 

information related to the content and the structure of the leaves and stems. In the 

present study, we tried to introduce a method for relative quantification of vegetation 

leaves protein contents using EO-1 Hyperion datasets through an innovative index named 

PALI (Protein Absorption Lines Index). The results of applying PALI to AVIRIS data also 

showed its robustness. However, applying PALI index for Hyperion images can only show 

the vegetation leaves protein contents of a pixel relative to its neighboring pixels and not 

absolute values. Nonetheless, it is assumed that absolute measurements will be possible if 

one can calibrate this index with field data. 
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INTRODUCTION 

 The signature of the leaves spectrum is 

considerably affected by its biochemical and 

biophysical properties (Card et al., 1988). 

Hyperspectral technology has made it 

possible to obtain a continuous spectrum of 

leaves reflectance from visible to infrared 

regions of electromagnetic spectrum 

(ChanSeok et al., 2005). Extraction of leaves 

biochemical information from a continuous 

spectrum of reflectance is an important and 

practically valuable achievement 

(Darvishzadeh et al., 2007). Green 

vegetation has unique features around the 

green (500 to 600 nm), red (600 to 700 nm) 

and near infrared (700 to 1300 nm) regions 

of its reflectance spectra (Van der Meer and 

De Jong, 2001). For example the green peak 

is due to the chlorophyll which has strong 

absorption in the red and blue bands 

(Haboudane et al., 2008; Liang, 2004). On 

the other hand, leaf tissue causes a large 

increase in reflectance in the near infrared 

(NIR) because of cell structure (shape and 

size) (Alavi Panah et al., 2008). Figure 1 

shows typical green leaf absorption features. 

There are many other absorption features 

present in the green vegetation spectrum, 

each one containing a considerable amount 

of information related to the content and the 

structure of the leaves and stems. One of the 

detectable compositions present in green 

leaves is protein (Lee and Searcy, 2000; 

Schlerf et al., 2010). Protein is one of the 

compounds present in leaves that contain 

Nitrogen (Feng et al., 2008). Protein has 

nine absorption features centered at 1,020, 

1,510, 1,730, 1,980, 2,060, 2,130, 2,180, 

2,240 and 2,300 nanometers (Serrano et al., 

2002; Liang, 2004). Some of these 
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Figure 1. Reflectance spectrum of a sample of green leaf (After Hoffer, 1978). 

 

absorption features are due to the presence 

of nitrogen whereas some others are related 

to stretches of O-H and C-H bonds present 

in the leaf protein compound. Also some of 

these spectral features are overtones of 

vibrations in NIR region (Van der Meer and 

De Jong, 2001). Table 1 shows the reason of 

the absorption at each of these nine bands 

(Van der Meer and De Jong, 2001).  

Chemical concentrations of vegetation 

foliage are indicators of the processes 

conducted by ecosystem (Huanga, et al., 

2004). During recent years, remote sensing 

technology has shown its ability in 

estimating foliar chemical concentrations 

over large geographic areas (Curran, 1989). 

The methodologies have focused on the data 

collected by spectroradiometers in hundreds 

of bands in the visible to near-infrared 

wavelengths, helping identification of 

chemicals through their many subtle spectral 

absorption features (Ghasemlu et al., 2010). 

One of the important foliar chemicals is 

nitrogen content which is an indicator of 

photosynthetic rate and overall nutritional 

status (Curran, 1989) and thus has been the 

subject of many spectrometric studies details 

of which can be found in (Huanga et al., 

2004). It is worth noting that in such studies 

the extraction of the reflectance spectra was 

carried out over entire canopies (Huanga et 

al., 2004). This is inappropriate for those 

who are interested in the chemical 

concentrations of individual leaf or whole 

trees. As an example, Wallis et al. (2002) 

found that eucalypts show considerable 

within-species variation in their 

concentrations of certain chemicals. Of 

course, many complicating factors have to 

be considered when one is extending 

reflectance measurements from dried ground 

leaves to whole fresh leaves and to entire 

canopies (Huanga et al., 2004). Indices such 

as NDVI which is based on the effect of red 

edge are often used to estimate leaf 

chlorophyll concentration. This limits the 

ability of the technique for estimating the 

concentrations of many other chemicals, 

such as those containing Nitrogen. This is 

because Nitrogen has many absorption 

bands lying outside the red edge region.  
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Table 1. Absorption features related to particular plant compounds (compiled from Elvidge, 1990).   

Wavelength             

(nm) 

Absorbing compounds Absorption mechanism 

430 Chlorophyll a Electron transition 

460 Chlorophyll b Electron transition 

640 Chlorophyll b Electron transition 

660 Chlorophyll a Electron transition 

910 Protein C-H Stretch, 3rd overtone 

930 Oil C-H stretch, 3rd overtone 

970 Water, starch O-H bend, 1st overtone 

990 Starch O-H stretch, 2nd overtone 

1020 Protein N-H stretch 

1040 Oil C-H stretch, C-H deformation 

1120 Lignin C-H stretch, 2nd overtone 

1200 Water, cellulose, starch, lignin O-H bend, 1st overtone 

1400 Water O-H bend, 1st overtone 

1420 Lignin C-H stretch, C-H deformation 

1450 Starch, sugar, water, lignin O-H stretch, 1st overtone, C-H stretch, C-H deformation 

1490 Cellulose, sugar O-H stretch, 1st overtone 

1510 Protein, Nitrogen N-H stretch, 1st overtone 

1530 Starch O-H stretch, 1st overtone 

1540 Starch, cellulose O-H stretch, 1st overtone 

1580 Starch, sugar O-H stretch, 1st overtone 

1690 Lignin, starch, protein C-H stretch, 1st overtone 

1730 Protein C-H stretch 

1736 Cellulose O-H stretch 

1780 Cellulose, sugar, starch C-H stretch, 1st overtone, O-H stretch, H-O-H deformation 

1820 Cellulose O-H stretch, C-O stretch 

1900 Starch O-H stretch, C-O stretch 

1924 Cellulose O-H stretch, O-H deformation 

1940 Water, protein, lignin, 

cellulose, starch, nitrogen 

O-H stretch, O-H deformation 

1960 Starch, sugar O-H stretch, O-H rotation 

1980 Protein N-H asymmetry 

2000 Starch O-H deformation, C-O deformation 

2060 Protein, nitrogen N-H stretch, N=H rotation 

2080 Starch, sugar O-H stretch, O-H deformation 

2100 Starch, cellulose O-H rotation, O-H deformation, C-O-C stretch 

2130 Protein N-H stretch 

2180 Protein, nitrogen N-H rotation, C-H stretch, C-O stretch, C=O stretch 

2240 Protein C-H stretch 

2250 Starch O-H stretch, O-H deformation 

2270 Cellulose, sugar, starch C-H stretch, O-H stretch, C-H rotation, CH2 rotation 

2280 Starch, cellulose C-H stretch, CH2 deformation 

2300 Protein, nitrogen C-H rotation, C=O stretch, N-H stretch 

2310 Oil C-H bend, 2nd overtone 

2320 Starch C-H stretch, CH2 deformation 

2340 Cellulose C-H stretch, O-H deformation 

2350 Cellulose, nitrogen, protein CH2 rotation, C-H deformation 
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Many workers used reflectance spectral 

derivative for their analysis (Dixit and Ram, 

1985; Shah et al., 1990; Tsai and Philpot, 

1998; Wessman, 1989). They believe that 

these derivatives are less sensitive to 

illumination intensity and background effects 

and thus can be used for enhancing subtle 

absorption features of foliar biochemicals. The 

first and the second derivatives and their 

approximations are usually combined with 

different smoothing transformations to 

estimate foliar chemical concentrations.  

In contrast, the Partial Least Squares (PLS) 

regression method (Wold, 1982) works in a 

manner similar to principal components 

analysis. It combines the most useful 

information from hundreds of bands into the 

first several factors. The PLS method reduces 

the effects of canopy background. However it 

is possible for the nitrogen absorption features 

to be masked by absorption features of leaf 

water and leaf chemical contents. To resolve 

this problem Clark and Roush (1984) 

suggested using continuum-removal analysis 

to remove those absorption features of no 

interest and thus to isolate those individual 

absorption features of interest (Mutanga et al. 

2003; Mobasheri et al., 2010).  

Kokaly and Clark (1999) were the first to use 

the continuum-removal analysis method  in 

vegetation studies where they estimated 

nitrogen, lignin and cellulose concentrations in 

dried leaves on the ground. The results of 

Kokaly and Clark (1999) showed that R2 

values for nitrogen varied from 0.90 to 0.97 

when sample numbers varied from 31 to 193. 

Kokaly (2001) further explored that two 

absorption features centered at 2,054 and 

2,172 nm were closely associated with 

nitrogen concentration. Later on, the 

methodology was tested by Curran et al. 

(2001) where they compared standard 

derivative analysis with continuum-removal 

analysis. They proved that the transformations 

derived from continuum removal analysis may 

produce higher R
2
 values than what the 

standard derivative analysis may offer.  

 In the present study, a method for relative 

assessment of vegetation leaves protein 

contents form Hyperion datasets is introduced. 

However absolute determination of the 

vegetation leaves protein contents needs field 

measurements concurrent with the satellite 

over-passing the area. 

Site Selection and Data 

 The region of study is an agricultural field 

in the south of Tehran confined between 

34.75oN and 35.55oN latitudes and 51.06oE 

and 51.36
o
E longitudes (Figure 2). Also 

Figure 2 shows a map of vegetation cover 

along with an NDVI image. 

In this study a sub-scene of a Hyperion 

scene is used. The Hyperion sensor is on-

board of NASA Earth Observing 1 platform. 

This sensor has the ability of capturing 

images in visible-near-infrared (VNIR: 400 

to 1300 nm) and shortwave infrared (SWIR: 

1,300 to 2,500 nm) regions of spectrum in 

224 bands. This enables the sensor to detect 

and discriminate different features. The 

spatial resolution of Hyperion is 30 m with a 

swath width of 7.5 km. 

METHODOLOGY 

Preprocessing and Atmospheric 

Correction 

 From the many types of modules built in 

ENVI for removing the effects due to the 

atmospheric interferences from the image, Fast 

Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH) was used in 

this study. This module is based on MODerate 

resolution TRANSmittance (MODTRAN) 

algorithm where it needs the image to be 

primarily converted to physical quantities such 

as radiance. 

 The Hyperion image acquired on May 21, 

2002 was in Level 1. Only 196 bands out of 

224 were calibrated. These bands were 8 to 57 

in the visible and near infrared (VNIR) and 77 

to 224 for SWIR. One of the problems in 

Hyperion image is that the sensors VNIR and 

SWIR have one pixel misplacing after detector 

128 in CCD (Charge Coupled Device) array. 
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(A) 

 
(B) 

 
 

Figure 2. (A): Map of the study area and an NDVI image of the region, (B): Land cover map of 

different species of vegetation. 

 
This misplacing was corrected where the 

disappearance of the striping effects was the 

results of this correction.. Subsequently, the 

Digital Number (DN) to radiance (L) 

conversion was done using the following 

equations: 

L= Digital number/400, for VNIR region 

L= Digital numver/800, for SWIR region (1) 

 In the next step, by using FLAASH 

software and entering the horizontal visibility 

value of 10km reported by the nearest weather 

station to the study area (code 0III), the 

relative correction for the atmospheric effects 

was carried out (Apan et al., 2004; Mobasheri 

et al., 2007). 

Modeling: the PALI Index 

 Our method relies on the fact that the depth 

of each absorption band is directly 

proportional to the density of the absorbing 

materials present in the substances available in 

each pixel (Serrano et al., 2002). Normally in 

remote sensing, the Normalized Difference 

Nitrogen Index (NDNI) is used to detect the 
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 2300 2240, 2180, 2130, 2060, 1980, 1730, 1510, 1020,i
RR

RR
I

iNIR

iNIR

i =

+

−

= ,    (3) 

 

vegetation nitrogen content (Serrano et al., 

2002). This index is based on the reflectance 

of two absorbing (1,510 nm) and non-

absorbing (1,680 nm) bands which are known 

as proteins spectral features (Liang, 2004). 

NDNI has the form of: 

)log(1/R)log(1/R

)log(1/R)log(1/R
NDNI

16801510

16801510

+

−
=   (2) 

 Where 1510R  and 1680R  are reflectance 

values at two absorbing (1,510 nm) and non-

absorbing (1,680 nm) bands, respectively. 

However NDNI has some weaknesses one of 

which being the use of only one absorption 

band i.e. 1,510 nm. It is likely to have some 

other substances present in the pixels with high 

reflectance values at 1,510 nm that could 

override that of nitrogen absorption band and 

consequently diminish the absorption feature 

(Serrano et al., 2002). To overcome this 

problem, it is suggested to define a new index 

where more protein absorption bands are 

deployed. In particular, it is suggested to use 

one non-absorbing band (highest reflectance) 

and as many absorption (low reflectance) 

bands as are present in the protein spectrum. 

Because the goal of this study was to detect 

vegetation protein through its nitrogen content, 

the 1,063.79 nm wavelength seems to be the 

most suitable non-absorbing band (Feng et al., 

2008) along with nine other absorbing bands. 

Therefore, the suggested indices can be 

formulated as follows: 

where NIRR  is reflectance at 1,063.79 nm 

and iR  is reflectance at ith absorbing band 

(Serrano et al., 2002; Liang, 2004). Using 

these indices, nine images were produced 

(Figures 3-a to 3-i). The calculated 

correlation between each pair of these 

images was as high as 1.0 and as low as 

0.834 (Table 2). This shows that most of the 

indices produced using Equation (3) are 

working properly and can be used for 

protein detection individually. However, as 

mentioned earlier there might exist some 

material with higher proportions having high 

reflectance in some of the protein absorption 

features causing these features to be hidden 

causing the relevant index to become very 

small or even negative. Because the spatial 

resolution of Hyperion is low (30 m), none 

of these indices can solely be used for the 

detection of the small amount of protein in 

the mixed pixels. An index comprising of all 

the indices mentioned in Equation (3) may 

work better particularly for the mixed pixels. 

On the other hand, since the depths of these 

absorption bands are different, any emphasis 

on the stronger absorption bands (if there is 

any) may result in better detection. 

To create this emphasis, the difference 

between reflectance in NIR and average 

reflectance in all absorbing bands (bands in 

wavelengths 1,020, 1,510, 1,730, 1,980, 

2,060, 2,130, 2,180, 2,240 and 2,300 nm) are 

used. Consequently, the following PALI 

index which is a normalization of all 

absorbing bands is introduced: 

∑

∑

∑

∑
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 (4) 

 Where n is the number of absorbing bands 

and the term ∑
=

n

i

in
R

1

1
 in Equation (4) shows 

the average reflectance in the absorption 

bands. This may overcome the above-

mentioned weakness of NDNI. It is found 

that the range of this index is between 0 and 

1. 

RESULTS AND DISCUSSION 

Because the index suggested in Equation 

(4) is based on all protein and nitrogen 

absorbing bands, the higher values of this  
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Figure 3. Images of indices produced by applying Equation (3) from left to right (upper) for 

1730 1510, 1020,  (middle) 2130 2060, 1980,  and (lower) 2300 2240, 2180, nm. 
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Table 2. Correlations between each pair of indices presented in Figures 3-a to 3-i. 

Index Figure 

3-a 

Figure 

3b 

Figure 

3-c 

Figure 

3-d 

Figure 

3-e 

Figure 

3-f 

Figure 

3-g 

Figure 

3-h 

Figure 

3-i 

Figure 3-a 
1 0.8401 0.8394 0.8369 0.8398 0.837 0.8369 0.8356 0.8341 

Figure 3-b 
0.8401 1 0.9995 0.9993 0.9979 0.9993 0.9994 0.9991 0.9988 

Figure 3-c 
0.8394 0.9995 1 0.9988 0.9966 0.9991 0.9995 0.9995 0.9992 

Figure 3-d 
0.8369 0.9993 0.9988 1 0.9978 0.9992 0.9992 0.9989 0.9987 

Figure 3-e 
0.8398 0.9979 0.9966 0.9978 1 0.998 0.9971 0.9964 0.9962 

Figure 3-f 
0.837 0.9993 0.9991 0.9992 0.998 1 0.9994 0.9992 0.9991 

Figure 3-g 
0.8369 0.9994 0.9995 0.9992 0.9971 0.9994 1 0.9995 0.9994 

Figure 3-h 
0.8356 0.9991 0.9995 0.9989 0.9964 0.9992 0.9995 1 0.9995 

Figure 3-i 
0.8341 0.9988 0.9992 0.9987 0.9962 0.9991 0.9994 0.9995 1 

 

Figure 4. Image of PALI index. 

 

index correspond to the pixels containing 

more protein. Of course there might exist 

pixels containing vegetation debris in which 

we might still have high protein contents 

available while we are not interested in 

detection of these pixels. In these cases, as a 

result of NIRR  value reduction, the index 

value drops down to small values and might 

even take negative values. This is because of 

the reflectance in NIR band used in the 

index which is high only for the green 

vegetation and drops down as the greenness 

of the vegetation diminishes. Since the goal 

was the detection of vegetation’s protein, 

only those pixels with iNIR RR >  for all 

absorption bands are selected. Those pixels 

not meeting this condition are either water or 

bare soil or they are not green vegetation so 

they are set to zero in the output image. 

Based on the above discussion this index is 

named PALI (Protein Absorption Lines 

Index). The modeling was done using 

MATLAB R2008a. The output PALI image 

is shown in Figure 4.  

The scatter plot between PALI and NDNI 

shows a correlation of about 0.6 (Figure 5). 

This shows that the two indices are not quite 

equivalent. 

The region A in Figure 5 is the pixels 

containing boundary regions that should be 

avoided. This figure shows that both NDNI 

and PALI indexes are giving small values for 

non-vegetated pixels (C in Figure 5). 

However, for fully vegetated pixels (B), 

both NDNI and PALI give high values. 

Excluding the A pixels, the correlation 

coefficient between PALI and NDNI was 

about 0.86 with R2= 0.74 where the number 

of samples was 129,286. A plot of NDVI 

and PALI is shown in Figure 6. It can be 

seen in this figure that the NDVI shows 
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Figure 5. Scatterplot between NDNI and 

PALI. The correlation coefficient is found to be 

0.86 with R
2
= 0.74. Number of samples was 

129286. 

Figure 6.  A plot of NDVI vs. PALI. The 

correlation coefficient was 0.93 with R
2
= 0.87. 

Number of samples was 129,286. 

 

Figure 7. A plot of NDNI vs. NDVI. As can 

be seen the correlation between these two 

indices is relatively poor. 

values of more than 0.2 (vegetated pixels), 

and PALI varies from 0.5 to 0.9. The 

scatteredness of points in the region of high 

NDVI values (A) means that the content of 

protein in fully vegetated cover pixels might 

be different from one pixel to the other. This 

might not be true for low cover pixels 

(region B in Figure 6) due to mixed pixel 

effects. The region (A) in Figure 5 has gone 

into the high NDVI values region in Figure 

6 (region A) while it has higher values of 

NDNI if Figure 5. 

Figure 7 is the plot of NDNI with respect 

to NDVI. This figure shows less correlation 

between fully vegetated pixels (NDVI > 0.5) 

and NDNI compared to the correlation 

between PALI and NDVI in the same region. 

Comparison between Figures 6 and 7 shows 

that PALI can detect vegetation protein in 

fully vegetated pixels much better than 

NDNI. This can be due to the sole nitrogen 

absorption band used in NDNI where many 

non-vegetated pixels (debris) may contain 

nitrogen and consequently be classified as 

vegetation protein (Serrano et al., 2002). 

This cannot happen for the PALI because of 

the deployment of all protein (plus nitrogen) 

bands in the new index.  

 To compare calculated PALI with those of 

individual absorption indices of Equation 

(3), a scatter plot of PALI against the mean 

of nine absorption indices (Mean 9) is 

shown in Figure 8 where both indices are 

normalized to one. A correlation coefficient 

of nearly 1.0 is found between PALI and 

Mean 9 with R2
 of 0.99 where the number of 

samples was again 129,286.  

As can be seen in Figure 8, PALI reads 

lower values compared to Mean 9. This 

means that some non-vegetated materials 

may have absorption features in one (or 

more) of the protein and nitrogen absorption 

features that may in turn exaggerate the 

protein content by showing higher values for 

Mean 9. For low-vegetated and non-

vegetated pixels (region A in Figure 8) and 

boundaries (region B in Figure 8) there was 

no difference between these two indices. 
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Figure 9. Land cover map (left) and false color image of AVIRIS from the same region (right). The 

region is an agricultural and forest area located in the north of Indiana State, USA. The classes are: 1: 

Alfalfa; 2: Corn-notill;  3: Cornmin; 4: Corn; 5: Grass/Pasture; 6: Grass/Trees; 7: Grass/Pasture-mowed;  

8: Haywindrowed; 9: Oats;  10: Soy-notill; 11: Soy-min till;  12: Soy-clean;  13: Wheat;  14: Woods;  15: 

Bldg-grass-trees-drives,  16: Stone-steel towers (Courtesy of [10]). 

 

 Figure 8. A plot of PALI against the mean of 

nine indices calculated by Equation (3). The 

correlation coefficient is found to be 1.0 with 

R
2
= 0.99. Number of samples was 129,286. 

Method Evaluation 

 To evaluate the method, PALI is applied 

to an AVIRIS image acquired in June 1992 

from an agricultural and forest region 

located in the north of Indiana State in USA. 

The AVIRIS is an airborne sensor flying at 

the altitude of 20 km with spectral resolution 

of 10nm in 220 bands covering 400 to 2,500 

nm spectral region with a spatial resolution 

of 20m. The available field data is a land 

cover map containing 16 different classes 

shown in Figure 9. The color image in 

Figure 9 is an RGB (17, 27, 50) image. As 

can be seen in Figure 9, different surface 

covers including different vegetations are 

present in the scene and consequently 

different amounts of protein are expected.  

After applying the algorithm to the 

AVIRIS image, the output classified image 

is shown in Figure 10. As can be seen in 

Figure 10, different pixels possess different 

values of PALI equivalent to different 

amounts of protein in different pixels. 

Although the precise amount of protein has 

not been assessed in this field, relative 

assessment which was the aim and objective 

of this research has been done successfully. 

The PALI index can assess the absolute 

magnitude of the protein content if one can 

calibrate PALI by measuring protein content 

of some samples in the field while the 

satellite or plane passes over concurrently. 

In this case the samples will be taken to the 

laboratory for their precise protein content 

quantifications where this was not within the 

scope of this research.  
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Figure 10. Land cover map (left) and PALI index for AVIRIS image (Courtesy of [10]). 

 

CONCLUSIONS 

 Extraction of biochemical information 

from a continuous spectrum of reflectance is 

an important and practically valuable 

achievement. One of the compositions 

present in vegetation requiring detection is 

the vegetation protein content. Protein has 

nine absorption bands in wavelengths 1,020, 

1,510, 1,730, 1,980, 2,060, 2,130, 2,180, 

2,240 and 2,300 nanometers. In this work, 

an index named PALI (Protein Absorption 

Lines Index) for relative quantification of 

vegetation protein contents is introduced. 

This index takes all protein absorption bands 

into account. PALI index was applied to 

Hyperion images as well as AVIRIS where 

its performance was quite acceptable.  

 The commonly used index for the 

nitrogen content is NDNI. The NDNI index 

has some weaknesses such as the use of only 

one absorption band where it is possible to 

have some other substances present in the 

pixels with high reflectance values that 

could override that of protein absorption 

band and consequently diminish the dip of 

the absorption feature. This has been 

overcome in PALI index by deploying more 

protein absorption bands and one non-

absorbing band in NIR. The correlation 

between PALI and NDNI was poor asserting 

that NDNI may have some difficulties 

detecting vegetation protein content 

particularly in the mixed pixels. Of course 

the correlation between these two indices for 

fully vegetated pixels was excellent. 

However the precise amount of protein 

content has not be assessed in this work but 

relative assessment which was the aim and 

objective of this research has been carried 

out successfully. It is believed that the PALI 

index can be used for assessing the amount 

of protein content if one can calibrate this 

index in the field while the satellite or plane 

passes over concurrently. In this case the 

samples must be taken to the laboratory for 

their precise protein content quantifications.  
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براي برآورد نسبي محتواي پروتئين برگ سبز گياهان با استفاده  PALIارائه شاخص 

 Hyperionاز تصاوير 

  زادگانم. ر. مباشري و م. رحيم

  چكيده

پذيرد. اين اي از خواص بيوشيميائي و بيوفيزيكي آنها تاثير ميطور قابل ملاحظههطيف بازتابندگي گياهان ب

-بيوشيميائي گياه را از طيف پيوسته آنها كه توسط تصاوير ابرطيفي توليد ميامكان وجود دارد كه اطلاعات 

هاي جذبي فراواني وجود دارند كه هريك حامل شود، استخراج نمود. در طيف بازتابندگي گياهان پديده

در پژوهش حاضر، سعي در معرفي باشند. اطلاعات زيادي در رابطه با محتوا و ساختار شاخ و برگ گياه مي

براي كمي كردن نسبي ميزان ) PALI )Protein Absorption Lines Index ناماخصي جديد بهش

بر تصاوير  PALIاست. نتيجه اعمال شاخص پروتئين موجود در گياهان با استفاده از تصاوير هايپريون شده

بر  PALI هرحال، اعمال شاخصدهد. بهتوان و قدرت بالاي اين شاخص را نشان مي AVIRISهايپريون و 

هاي طور مطلق در پيكسلطور نسبي و نه بهتواند محتواي پروتئين برگ گياهان را بهتصاوير هايپريون تنها مي

هاي ميداني شاخص فوق را گيريتوان با اندازهمجاور در يك تصوير نشان دهد. البته اعتقاد براين است كه مي

  اقعي و مطلق پروتئين گياهان را ممكن سازد.گيري مقادير واي واسنجي نمود كه اندازهگونهبه
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