Assessment of Changes in Soil Erosion Risk Using RUSLE in Navrood Watershed, Iran

H. Asadi¹, M. Honarmand², M. Vazifedoust², and A. Mousavi²

ABSTRACT

Risk assessment of soil erosion, one of the most important land degradation problems worldwide, is very essential for land and water resources management, and development of soil conservation methods. In the present study, the temporal changes of soil erosion risk were assessed from 1987 to 2010, based on the Revised Universal Soil Loss Equation (RUSLE) using Remote Sensing (RS) and Geographic Information Systems (GIS) for the Navrood Watershed, Iran, with an area of 270 km². Two Landsat satellite imageries obtained in 1987 and 2010 were used to assess the changes in vegetation cover during this period, and to obtain the Cover factor (C) of RUSLE. Rainfall and soil texture data and a digital elevation model were used to calculate the rest of RUSLE factors, which were taken as constant for the study period. The results showed that the average annual soil loss over the watershed ranged from 0 to 1,056 t ha⁻¹ y⁻¹ (Cumulative percentage > 99.9%). The area mapped as very high erosion risk (> 100 t ha⁻¹ y⁻¹) increased from 10% in 1987 to 12% in 2010, and the area of the next risk class (51-100 t ha⁻¹ y⁻¹) increased from 8 to 9%. These changes cover an area of about 800 ha in the watershed, in which erosion risk has been doubled or tripled in the last 23 years. Forest clearing and rangeland overgrazing were identified as the most important reasons for the increase in erosion risk.

Keywords: Forest clearing, Overgrazing, Soil loss, Water erosion, Vegetation cover.

INTRODUCTION

Soil erosion is considered as one of the most important forms of soil degradation worldwide (Oldeman, 1994). The negative effects caused by soil erosion on soil degradation, hydrological systems, agriculture, water quality, and the environment in general have long been established and the impacts of soil erosion continue to pose severe threats to human sustenance (Lal, 1998). Accordingly, assessment of soil erosion hazard is an essential work towards developing erosion prevention methods for lands and water resources management. Erosion risk indicates the relative probability that erosion will occur at a certain location as compared to other locations in the region mapped. Erosion risk maps are constructed using either numerical erosion models or qualitative approaches (Vrieling et al., 2002). Empirical models such as the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) are the most commonly methods (Bhattarai and Dutta, 2007; Zhang et al., 2009) used to predict soil erosion, especially in watershed areas due to their minimal data requirements and ease of application.

USLE/RUSLE predicts the long-term average annual rate of erosion on a field slope, based on rainfall pattern, soil type, topography, crop system, and management...
practices (soil erosion factors) (Renard et al., 1997). Traditionally, these models were used for local conservation planning at an individual property level. The factors used in these models were usually estimated or calculated from field measurements. The methods of quantifying soil loss based on erosion plots possess many limitations in terms of cost, representativeness, and reliability of the resulting data. They cannot provide spatial distribution of soil erosion loss due to the constraint of limited samples in complex environments. So, mapping soil erosion in large areas is often very difficult using these traditional methods. The use of Remote Sensing (RS) and Geographical Information System (GIS) techniques makes soil erosion estimation and its spatial distribution feasible with reasonable costs and better accuracy in larger areas (Millward and Mersey, 1999; Shi et al., 2004; Fu et al., 2005; Aydin and Tecimen, 2010; Chen et al., 2011). The WATEM/SEDEM model (Van Rompaey et al., 2001) was recently developed to overcome the shortage of USLE/RUSLE model of predicting sediment delivery. This model calculates 2D-erosion rates using the RUSLE and predicts sediment delivery to river channels using a spatially distributed sediment transport capacity equation. Application of the latest model has been relatively successful in many countries (Van Rompaey et al., 2002; 2003, 2005; Verstraeten et al., 2007; Alatorre, et al., 2010; Shi et al., 2012; Haregeweyn et al., 2013; Sheng et al., 2015; Bezak et al., 2015).

Vegetation cover is strongly affected by human activities (Morgan, 2005). Spatial and temporal dynamics of vegetation cover can be assessed by using satellite data, among other methods. A quite common approach is the use of spectral vegetation indices. Vegetation indices, such as NDVI (Normalized Difference Vegetation Index) can easily be derived from data acquired by a variety of satellites operating at different spatial resolutions and long time series (Vrieling et al., 2008). The NDVI can give a proper relative indication of the spatial and temporal variability of vegetation cover. NDVI has therefore often been used for assessing the protective vegetation cover within erosion studies (e.g. De Jong et al., 1999; Jain and Goel, 2002; Symeonakis and Drake, 2004).

Vegetation cover including forests and rangelands has been negatively affected by human activities such as clearing and overgrazing during the last decades across Iran. The objectives of this study were to assess the temporal changes of soil erosion risk during the last two decades in the critical region of Guilan, north part of Iran, based on the Revised Universal Soil Loss Equation (RUSLE) and using Remote Sensing (RS) and Geographic Information Systems (GIS) in Navrood Watershed.

MATERIALS AND METHODS

Study Area

The study area was Navrood Watershed, located at latitudes between 37.36 and 37.45 N and longitudes between 48.35 and 48.54 E, in the western part of Guilan Province, in the north of Iran (Figure 1). The area of the watershed is 270 km²; it drains eastwards to the Caspian Sea. The climate is humid in plain areas and cold in highlands with an annual average precipitation of 836 mm and a mean annual temperature of 10.7°C. The vegetation cover in this area comprises two types, namely, forest and pasture. The elevation varies from 130 m to 3,000 m. Three soil types, i.e. Alfisols, Entisols and Inceptisols, have been identified in the watershed. Several villages exist in the area.

The RUSLE

The average soil loss due to water erosion per unit area per year was calculated using the RUSLE equation proposed by Renard et al. (1997):

\[A = R \times K \times L \times S \times C \times P \]

(1)
Assessment of Changes in Soil Erosion Risk

Guilan Province

Figure 1. Location of the study area.

Where, A is soil loss in t ha$^{-1}$ y$^{-1}$, R is the Rainfall–runoff erosivity factor (MJ mm ha$^{-1}$ h$^{-1}$ y$^{-1}$), K is the soil erodibility factor (t ha h MJ$^{-1}$ ha$^{-1}$ mm$^{-1}$), L is the slope Length factor, S is the slope Steepness factor, C is the Cover-management practice factor, and P is the support Practice factor.

Every erosion factor was converted into a grid layer with a cell size of 90×90 meters. Implementation of the RUSLE in a GIS resulted in annual erosion risk map for the Navrood Watershed.

The RUSLE model uses the Brown and Foster (1987) approach to calculating the average annual rainfall erosivity, R (MJ mm ha$^{-1}$ h$^{-1}$ y$^{-1}$):

$$ R = \frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{m_j} (EI_{30})_k $$

Where, n is the number of years of the record, m_j is the number of erosive events for a given year j, and EI_{30} is the rainfall erosivity index of a single event k. Thus, R factor is the average value of the annual cumulative EI_{30} over a given period. An event’s rainfall erosivity EI_{30} (MJ mm ha$^{-1}$ h$^{-1}$) is calculated as follows:

$$ EI_{30} = (\sum e_r v_r) I_{30} $$

Where, e_r and v_r are, the unit rainfall energy (MJ ha$^{-1}$ mm$^{-1}$) and the rainfall amount (mm) during a time period r, respectively, and I_{30} is the maximum rainfall intensity over a 30 minute period during the event (mm h$^{-1}$). The unit rainfall energy (e_r) is calculated for each time interval as:

$$ e_r = 0.291 - 0.72 \exp(-0.05i_r) $$

Where, i_r is the rainfall intensity during the time interval (mm h$^{-1}$).

In the current study, rainfall pluviographic data were obtained from nine recording rain gauges in Guilan Province at 15-minutes intervals during the period 2003 to 2007, to generate an erosivity map for the study area. Rainfall erosivity factor (R), average annual precipitation, Fournier index and modified Fournier index (Arnouldus, 1980; Fournier, 1960) were calculated for the nine recording rain gauges, and the correlation between R value and these indexes was tested. Then, the equation with the highest correlation was used to estimate R value in the other 38 daily-read raingauge stations in Guilan Province. Finally, rainfall erosivity map of the province was produced by kriging method of geostatistic in ArcGIS9.3 (Honarmand et al., 2011). The map of R factor for the study area was obtained from the latter map.

To consider early spring erosion by runoff from snowmelt, rainfall erosivity value might be adjusted by adding the precipitation falling through December to March in inches multiplied by 1.5 which gives R value in terms of empirical units. This was then multiplyed by 17.02 in order...
to obtain the R value in MJ mm ha$^{-1}$ h$^{-1}$ y$^{-1}$ (Renard et al., 1997; Whishmeier and Smith, 1978). In this study, firstly, the map of average precipitation from December to March of the province was obtained by kriging method from point data of all 48 stations. The map of snowmelt erosivity was then produced by overlaying this map by the map of snow covered area of the province obtained from MODIS satellite images (Emre Tekeli et al., 2005) and considering the calculation coefficients of 1.5 and 17.02.

Soil erodibility factor was estimated by the relation proposed by Romkens et al. (1986):

$$K = 7.594 \left[0.0034 + 0.0405\exp \left(\frac{1}{2} \left(\log D_s + 1.659 \right)^2 \right) \right] \tag{5}$$

Where, K is in terms of t ha h MJ$^{-1}$ ha$^{-1}$ mm$^{-1}$, and D_s = Geometric mean particle diameter of soil texture. Values of soil erodibility factor were calculated for each of soil mapping units. As there was no soil map for the watershed, soil unit map was produced by overlaying the geology, topography, land cover and rainfall maps, which yielded 78 units. Finally, 50 surface (0-15 cm) soil samples were collected over the watershed according to the defined soil units, the size of units, and accessibility. Particle size distribution of the soil samples was determined according to Hydrometer Method (Gee and Or, 2002).

In modeling erosion in GIS, it is common to calculate the LS combination using the theoretical and technical procedures described by Moore and Burch (1986) and Moore and Wilson (1992). The equation used to compute the LS factor is as follows:

$$LS = \left(\frac{A_s}{22.13} \right)^{0.4} \left(\frac{\sin \beta}{0.0896} \right)^{1.3} \tag{6}$$

Where, A_s is the upslope contributing factor per unit width of contour (or rill) in m2 m$^{-1}$, β is the slope angle in degrees. In the current work, the Digital Elevation Model (DEM) of the study area with a cell size of 90 m was used to estimate LS factor. Slope angle and Flow Direction was determined from DEM. The Flow Direction was used as an input grid to derive the Flow Accumulation that was used to obtain upslope contributing factor.

The Cover and management factor (C) reflects the effect of cropping and management practices on soil erosion rates (Renard et al., 1997). The following formula was used to generate a C factor surface from NDVI (Normalized Difference Vegetation Index) values (Van der Knijff et al., 1999, 2000):

$$C = \exp \left(-\alpha \frac{NDVI}{\beta - NDVI} \right) \tag{7}$$

Where, α and β are unitless parameters that determine the shape of the NDVI-C curve. An α-value of 2 and a β-value of 1 seem to give reasonable results (Van der Knijff et al., 1999).

In this study, to investigate the temporal changes of soil erosion risk, changes in vegetation cover in two different period were assessed. For this reason, the C-factor was calculated using NDVI map derived from satellite images. Two Landsat TM images acquired on 10 August 1987 and 2010 with a spatial resolution of 30 m were used to create NDVI images.

The NDVI was calculated as follows:

$$NDVI = \frac{NIR - VIS}{NIR + VIS} \tag{8}$$

Where, VIS and NIR stand for the spectral reflectance measurements acquired in the visible (red) and near-infrared regions, respectively.

In RUSLE, the support Practice (P) factor is generally applied to disturbed lands and represents how surface and management practices, such as contouring, terracing, and strip cropping are used to reduce soil erosion. For areas where there is no support practice, the P factor is set to 1, which was also the case for the study area.

RESULTS AND DISCUSSION

Rainfall+snowmelt erosivity map of the watershed is presented in Figure 2. The rainfall+snow erosivity index ranged from 164 to 1,070 MJ mm ha$^{-1}$ h$^{-1}$ year$^{-1}$ over the...
Assessment of Changes in Soil Erosion Risk

Figure 2. Spatial distribution map of R-factor over the watershed.

Watershed. Rainfall erosivity relates to rainfall amount and intensity and may be as low as 10 in dry regions (Sepaskhah and Sarkhosh, 2004) to as high as 8,500 in humid regions (Angima et al., 2003). Analysis of the spatial variations in R factor across Iran (Sadeghi et al., 2011) verified that Anzali and Bam Stations, located in the northern and central Iran, respectively, had the maximum and minimum erosivity values, respectively. Angulo-Martínez and Beguería (2009) estimated R factor for Ebro Basin of about 85,000 km² in the northeastern Spain, to range from 40 to 4,500 MJ mm ha⁻¹ h⁻¹ year⁻¹. In the study of Abu Hammad (2011), R ranged from 200 to 450 MJ mm ha⁻¹ h⁻¹ year⁻¹ in a small Mediterranean Watershed in the Central Palestinian Highlands.

The R value followed a decreasing trend from east to west with a slight increase in the western and southwestern regions (Figure 2). Overall, the spatial distribution of the R factor in the study area could be explained by the proximity to the major water mass of the Caspian Sea. The relief, with mountain ranges to the west, north, and south of the region, modifies this general pattern. Another effect of the relief is the isolation of the central area from the main precipitation sources through creation of a rain shadow zone. Accordingly, the elevation gradient of rainfall in north of Iran including Guilan Province has been reported to show a second order pattern, which means rainfall decreases to 1,500 m and then increases to 3,000 m (Khalili, 2005). Snow erosivity taking place in mountain areas of southwest and west of the watershed, should also consider in the spatial distribution of the R factor. All these influences result in a rather complex spatial pattern of erosivity.

Soil erodibility varied from 0 to 0.044 t ha h MJ⁻¹ ha⁻¹ mm⁻¹ (Figure 3). Most parts of the study area had K values of 0.043-0.044 t ha h MJ⁻¹ ha⁻¹ mm⁻¹ comprising clay and clay loam soils, which classified as high erodibility according to Hazelton (1992). The low K values (0-0.0029 t ha h MJ⁻¹ ha⁻¹ mm⁻¹), which comprised sandy loam soils, were identified in a small area of the watershed (northwest), mostly the region of gravel-sized rock outcrops.
The LS-factor accounts for the effect of slope length and slope gradient on erosion. Soil loss increases more rapidly with slope steepness than it does with slope length (McCool et al., 1987). As shown in Figure 4, the topographic factors (LS) ranged from 0 to 259, the steeper the slopes the higher the LS factors. The range of LS factor and intersection of the classes represents severe topography over the watershed. The watershed has a steep relief (130-3000 m) with mountain ranges to the west, north, and south of the region. The slopes in this watershed also exhibited a complex hillslope profile. The Navrood Watershed represented slopes greater than 10%, many exceeded 50%, and some approached 100% or even more. All these resulted in a higher LS-factor, but, fortunately, most part of the watershed is covered by natural forest shown by low values of C factor (Table 1) which prevents very high rates of soil erosion.

In order to prepare C-factor maps, NDVI maps were obtained from the Landsat-TM satellite images of the study area. The $NDVI$ map showed a range from 0 to 0.73 in 1987 and 0 to 0.74 in 2010. The C values derived from the $NDVI$ map ranged from 0.003 to 1 in both years. Generally, eastern regions of the watershed with lowest C values are covered by dense forest; on the other hand, northwestern region of the watershed with bare soils and rocks shows highest C values. To give an insight into the situation, five classes were defined for the C value and the area coverage was derived for each class in both years of 1987 and 2010 (Table 1). The first class ($C < 0.15$) including undisturbed forests and pasture/rangelands with more than 40% ground cover has been decreased from 72 to 68% of the total watershed area, i.e. 1,080 ha of the forest/rangelands has been cleared/overgrazed during this period. On the other hand, the area of the C class of 0.85-1, which represents bare soils and rock outcrops, has been increased from 5 to 6.8 percent of the watershed, i.e. about 486 ha.

![Figure 3. Spatial distribution map of K-factor over the watershed.](image)

Table 1. Area coverage (%) of each class of C values in two different periods.

<table>
<thead>
<tr>
<th>C Value</th>
<th>0.003-0.15</th>
<th>0.15-0.3</th>
<th>0.3-0.5</th>
<th>0.5-0.85</th>
<th>0.85-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>72.03</td>
<td>5.64</td>
<td>4.95</td>
<td>12.32</td>
<td>5.06</td>
</tr>
<tr>
<td>2010</td>
<td>68.09</td>
<td>8.17</td>
<td>6.96</td>
<td>9.96</td>
<td>6.82</td>
</tr>
</tbody>
</table>
has been added to the area of bare soils. All these changes resulted in higher erosion risk, as discussed below.

Prediction of the average annual soil loss (soil erosion risk) was computed by overlaying five maps of RUSLE factors in ArcGIS for the two dates (Figures 5 and 6). Results show that the average annual soil loss over the watershed ranged from 0 to more than 100 t ha$^{-1}$ y$^{-1}$ in both periods. The lowest erosion risk corresponds to the area of rock outcrops of northwestern part of the watershed, and to undisturbed dense forests extended from east to central region of the watershed. In contrast, the highest soil erosion risk of > 100 t ha$^{-1}$ y$^{-1}$ corresponded to bare soils of rangelands of the watershed mostly located in western parts of steep slopes.

Annual soil loss (erosion risk) was classified into four different classes of low, moderate, high, and very high erosion risk of...
Figure 6. Spatial distribution map of average annual soil loss over the watershed in 2010.

0-10, 11-50, 51-100 and > 100 t ha\(^{-1}\) y\(^{-1}\) respectively. This allows simple calculations/comparisons of the area coverage and ratios of the classes for two years of prediction. The area coverage and relative percent of each class were derived from the soil erosion map of the study area in both years of 1987 and 2010. Grouping of erosion risks in different classes has also been carried out by Prasuhn et al. (2013) following the German Direct Support Scheme Obligation Regulations in which three classes of low (0-30), moderate (30-55) and high (> 55) are defined.

The lowest erosion risk (0-10 t ha\(^{-1}\) y\(^{-1}\)) comprised 53% of the total area in 1987 and remained almost the same in 2010. The area of moderate erosion risk (11-50 t ha\(^{-1}\) y\(^{-1}\)), which extended mainly over the valley sides and disturbed sites in the watershed, decreased from 29% in 1987 to 26% in 2010. On the other hand, the area of high (51-100 t ha\(^{-1}\) y\(^{-1}\)) and very high (> 100 t ha\(^{-1}\) y\(^{-1}\)) erosion risks increased from 8 to 9% and from 10 to 12%, respectively. This means that the erosion risk of about 800 ha of the watershed area increased two to more than three times during 23 years. Forest clearing and rangeland overgrazing are the most important reasons of these changes. In an opposite situation at Kuseyr Plateau, Turkey, Ozsahin and Uygur (2014) showed that the land under severe erosion risk decreased from 30 to 22% from 1987 to 2010. The maximum and average annual soil losses in the plateau were as high as 59.81 and 6.19 t ha\(^{-1}\) per year in 1987, respectively, and 48.33 and 5.00 t ha\(^{-1}\) per year in 2010, respectively. Reclamation of the land cover from the past to the present was mentioned as the key factor in this regard. In other studies, the change of land use and land cover was used to calculate either historical (Mutekanga et al., 2010) or future erosion risk (Prasuhn et al., 2013). Also, the possible reduction of soil erosion risk was estimated by Karydas et al. (2009) and the erosion risk of environmental changes was evaluated by Zhang et al. (2010).

Validation of spatial soil loss predictions through soil erosion models and, therefore, validation of soil erosion risk maps are generally difficult (Gobin et al., 2004; Prasuhn et al., 2013). There is a lack of scale-specific calibration and validation data (Tetzlaff et al., 2013). Spatial predictions should also be verified through spatial, field-based assessments of soil erosion (Bui et al.,
Assessment of Changes in Soil Erosion Risk

239

Figure 7. Four examples for plausibility checks of the soil loss map in the field. The number and arrows show the location and direction of photography indicated in Figure 6.

between 10 and 20, predicted soil loss increased to 420 t ha\(^{-1}\) per year, and for slopes with \(LS\)-factors between 20 and 30, the predicted soil loss was 549 t ha\(^{-1}\) per year. Abu Hammad (2011) estimated that soil loss ranged from 0 to > 50 t ha\(^{-1}\) y\(^{-1}\) in a small Mediterranean Watershed in the central Palestinian highlands. Prasannakumar et al. (2012) estimated the average soil erosion rate for a forested mountainous sub-watershed in Kerala, India, to be from 0 to 17.73 t h\(^{-1}\) y\(^{-1}\). Prasuhn et al. (2013) used a similar methodology to obtain the soil erosion risk map of Switzerland. They estimated actual soil loss for agricultural area and permanent grassland to be approximately > 50 and > 10 t ha\(^{-1}\) y\(^{-1}\), respectively, while the potential

2011). However, there is very few such data; the majority of data are outlet based, e.g. measurements of sediment load of rivers. Additionally, long-term measurement series from actually cultivated plots are required to verify the long-term average soil loss (Prasuhn et al., 2013). Accordingly, validation of the obtained map was carried out qualitatively just with visual survey. There was a spatially good agreement between mapped soil loss and field observation of soil erosion/cover, particularly for the area with potentially low and very high erosion risks (Figure 7).

The map of potential erosion risk (Figure 8) was produced by setting \(C\) factor to 1, based on the assumption of vegetation cover clearing. Potential erosion risk is defined as the inherent risk of erosion irrespective of current land use or vegetation cover (Vrieling et al., 2002). According to the map, the potential erosion risk ranged from 0 to over 400 t ha\(^{-1}\) y\(^{-1}\). The result show that vegetation cover has an important role in preventing soil loss in 57% of the watersed that has high to very high potential soil erosion risk of more than 400 t ha\(^{-1}\) y\(^{-1}\). The area with very high potential erosion risk extended mainly over the east part of the watershed where the current actual erosion risk is low (Figure 6). It is a fact that rainfall erosivity is high over the Navrood Watershed and its topography is very steep, therefore, vegetation cover plays an important role in controlling soil erosion. It will result in very high erosion if the vegetation cover, especially forests, is removed by clearing or fire.

The average soil erosion rates estimated for the watershed accorded with similar studies carried out in different parts of the world. Shi et al. (2002) estimated average annual soil loss for Hanjiang River in central China with the area of 45,000 km\(^{2}\) to be from zero to > 80 t ha\(^{-1}\) per year. In an agricultural catchment in central Kenyan highland conditions, for segments with \(LS\)-factors between 0 and 10, Angima et al. (2003) predicted the average soil loss to be 134 t ha\(^{-1}\) per year, while for \(LS\)-factors
erosion risk was estimated to be \(> 500 \, \text{t} \, \text{ha}^{-1} \, \text{y}^{-1} \).

Finally, identification of areas with high risk of soil loss (Figures 5 and 6) necessitated the application of certain conservation and management practices. As the area with high risk of soil erosion are mainly the ranges of upland consisting of steep and hilly areas, the easy and affordable conservation practices to control the high soil loss rate are vegetation cover and grazing management. On the other hand, considering the high rainfall erosivity (Figure 2) and the steep topography (Figure 4) of the region, any change in vegetation cover, especially forest clearing, should be strictly prevented, otherwise the rate of soil erosion will increase several times over the whole watershed (Figure 8). Optimizing land use while implementing legal restrictions will lead to a decrease in erosion rate (Vafakhah and Mohseni Saravi, 2011).

CONCLUSIONS

This study attempted to assess soil erosion risk and to map changes in Navrood Watershed, north of Iran, between 1987 and 2010 by implementing RUSLE in a GIS environment. This approach proved to be an effective way to map the spatial distribution of soil erosion risks in a large area and could be an efficient, easy, and time-saving method for soil erosion risk monitoring. Moreover, the results indicated those locations in the watershed that were susceptible to high risks of soil erosion. Therefore, in accordance with the current land uses, appropriate conservation measures could be adopted by the pertinent authorities and organizations.

In the Navrood Watershed, the land use pattern in areas prone to soil erosion indicates that areas with natural forest cover in the most eastern parts of the watershed have minimum rate of soil erosion while areas with overgrazed range covers have high rate of soil erosion (\(> 50 \, \text{t} \, \text{ha}^{-1} \, \text{y}^{-1} \)). Terrain alterations along with high \(LS \)-factor and rainfall prompt these areas to be more susceptible to soil erosion. The predicted amount of soil loss and its spatial distribution can provide a basis for comprehensive management and sustainable land use for the watershed. The areas with high and severe soil erosion warrant special priority for the implementation of control measures. While the present analytical model helps mapping of vulnerability zones,
micro-scale data on rainfall intensity, soil texture and field measurements can augment the prediction capability and accuracy of remote sensing and GIS based analysis. During the studied 23 years (1987-2010), the erosion risk of about 3% of the watershed area increased from moderate (11-50 t ha$^{-1}$ y$^{-1}$) to high (51-100 t ha$^{-1}$ y$^{-1}$) and very high (> 100 t ha$^{-1}$ y$^{-1}$). This area extended mainly over the watershed valley sides and disturbed sites. Forest clearing and rangeland overgrazing seem to be the most important reasons of these changes.

The map of potential erosion risk, as the inherent risk of erosion irrespective of current land use or vegetation cover, show that vegetation cover has an important role in preventing soil loss in 57% of the watersheds that had high to very high potential of soil erosion risk of more than 400 t ha$^{-1}$ y$^{-1}$. Removal of the vegetation cover by clearing or fire will result in very high soil erosion. It is a fact that rainfall erosivity is high over the Navrood Watershed and its topography is very steep, therefore, vegetation cover plays an important role in preventing soil erosion.

ACKNOWLEDGEMENTS

Authors would like to acknowledge Guilan Water Company for financial support of the project.

REFERENCES

Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703, USDA, Washington, DC, USA, 404 PP.

ارزیابی تغییرات خطر فرسایش خاک با استفاده از RUSLE در حوضه ناورود، ایران

چکیده

ارزیابی خطر فرسایش خاک، به عنوان کی از مهم‌ترین مشکلات تخریب خاک در سراسر جهان، برای مدیریت منابع آب و خاک و توسعه روش‌های حفاظت خاک ضروری است. در مطالعه حاضر، تغییرات زمانی خطر فرسایش خاک از سال 1366 تا 1389 بر اساس معادله جهانی هدرفتن خاک RUSLE (که می‌تواند به شکل RUSLE یا به‌صورت گزارش‌های جغرافیایی GIS و سنجش از دور RS) در حوضه ناورود ایران با مساحت 270 کیلومتر مربع ارزیابی شد. در توصیف آلودگی مربوط به سال‌های 1366 و 1389 برای ارزیابی تغییرات پوشش گیاهی در این مدت، و تنیع فاکتور پوشش گیاهی مورد استفاده قرار گرفت. داده‌های رایگان و بهره‌گیری از سامانه‌های اطلاعات جغرافیایی (GIS) و سنجش از دور (RS) از میانگین سالانه تغییرات خاک در سطح حوضه از صفر تا 100 درصد تخمین زده شدند. نتایج نشان داد که در سال‌های 1366 و 1389 تغییرات در مناطق با خطر فرسایش خاک بیش از 100 درصد بوده‌است. داده‌های محاسبه سایر فاکتورها با کار رفته و برای دوره مورد نظر ثابت گردیدند. نتایج تحلیل که میانگین سالانه تغییرات خاک در سطح حوضه از صفر تا 100 درصد تخمین زده شدند. نتایج نشان داد که در سال‌های 1366 و 1389 تغییرات در مناطق با خطر فرسایش خاک بیش از 100 درصد بوده‌است. داده‌های محاسبه سایر فاکتورها با کار رفته و برای دوره مورد نظر ثابت گردیدند.
