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Abstract

Resistance traits are economically important in crops in terms of accessibility to promising
resistant germplasms. This study was conducted to evaluate SNP marker-trait association for
cereal cyst nematode (CCN), Heterodera filipjevi in a large number of natural bread wheat
populations. Phenotypic data analysed using GLM (Generalized Linear Model) indicated
significant differences among the landrace accessions for resistance to H. filipjevi. The
genotyping was performed by 152K SNP chip on 188 accessions. After filtering, 10,471
polymorphic SNPs were employed for Genome Wide Association Study (GWAS). Population
structure among the wheat genotypes were investigated using 840 well distinct SNP markers.
Two sub-populations were revealed by structure software, and eleven markers were found to
be significantly (p-value < 0.001) associated with resistance to H. filipjevi on chromosomes
2A, 3B, 4A, 4B, 5A, 5B, 5D, and 6B. The linkage disequilibrium analysis for all significantly
associated SNPs showed that markers on chromosomes 4A and 4B were in high intra-
chromosomal linkage disequilibrium, and consequently, eight markers were recommended as
strongly associated with resistance to H. filipjevi. The present study demonstrated valuable
sources of resistance in the studied wheat genotypes against a widespread and important species
of CCNs. The associated markers could be used in molecular breeding programs of bread
wheat.
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INTRODUCTION
Cereal Cyst Nematodes, CCNs (Heterodera spp.) are one of the most important causal agents
of yield losses on wheat annually, hence its global importance is known in most wheat-growing
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areas (Smiley et al., 2017; Toumi et al., 2018). The genus Heterodera is divided into nine
groups based on morphological and molecular characteristics (Handoo and Subbotin, 2018), in
which H. filipjevi is one of the most important species belonging to Avenae group. Host plants
of H. filipjevi include wheat, rye, barley, corn, and many grasses (Smiley et al., 2017). Yield
losses caused by H. filipjevi in three winter wheat cultivars in Iran were estimated to be 20.4
to 24.8% (Karimipour Fard et al., 2018). Wheat is one of the world's most commonly used
cereal grains growing all over the world and feeding more than 40% of the world population.
Amongst the different types of wheat grain, bread wheat (Triticum aestivum L., AABBDD) is
the most economically important crop and the world's most widely cultivated cereal. It is
originated from hybridization between Triticum urartu (AA) and Aegilops speltoides-related
species (BB), forming Triticum turgidum ssp. dicoccoides, and again hybridized between
Triticum turgidum ssp. durum (AABB) and Aegilops tauschii (DD), forming the modern
hexaploid bread wheat (AABBDD).

Resistant cultivars are often regarded as one of the most effective tools for controlling CCNs.
Many sources have been reported and reviewed for conferring resistance measures. Important
sources of resistance genes were revealed in landrace varieties by identifying many resistance
Cre genes. In recent years, different types of molecular markers have been applied in plants
such as Restriction fragment length polymorphisms (RFLPs), microsatellites or simple
sequence repeats (SSRs), expressed sequence tags (ESTs), cleaved amplified polymorphic
sequence (CAPS), randomly amplified polymorphic DNA (RAPD), amplified fragment length
polymorphisms (AFLPs), inter simple sequence repeat (ISSR), Diversity arrays technology
(DATrT) and single nucleotide polymorphism (SNP) (Dhingani et al., 2015). In genetic studies,
single nucleotide polymorphisms (SNPs) are one of the most effective tools. SNPs are more
powerful in estimating population structure which are abundant in the genome.

In recent years, research on wheat genome recorded 90K SNP by the new Infinium to 500K
and 4 M in lllumina shortgun WGS array (Avni et al., 2014; Wang et al., 2017; Lai et al.,
2015). Association mapping (AM), is known extremely for the identity of markers associated
traits based on linkage disequilibrium (LD) in plants. AM has been applied to discovery of
quantitative trait loci (QTL) on chromosomes in range of crop species. To date, QTL regions
on different chromosomes were detected in association with particular traits using AM in wheat
such as pre-harvest sprouting resistance, low a-amylase and seed color (Rabieyan et al., 2022)
and grain-associated traits (Wang et al., 2017), resistance to CCNs (Heterodera spp.),
resistance to root lesion nematode (Pratylenchus spp.) and resistance to crown rot (Dababat et
al., 2016; Erginbas-Orakci et al., 2018; Kumar et al, 2021; Sohail et al., 2022).
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Several QTLs have been suggested to affect on resistance to H. filipjevi. The first survey of
QTLs conferring resistance to H. filipjevi in wheat reported eleven QTLs on chromosomes
1AL, 2AS, 2BL, 2D, 3AL, 3BL, 4AS, 4AL, 5BL, 6B, 6D and 7BL (Pariyar et al., 2016;
Dababat et al., 2021).

The aim of the present study was to a: find marker-trait associations within 188 wheat
genotypes collected from West Asia-North Africa, WANA, b: identify SNPs associated with

resistance to H. filipjevi in wheat, c: combine analyses of phenotypic data and association

mapping.

MATERIAL AND METHODS

Plant Materials and Inoculum Preparation

A total of 223 wheat accessions originating mostly from West Asia and North Africa (WANA
countries) with three wheat cultivars as susceptible and resistant controls were used to evaluate
their resistance to H. filipjevi. It is worth to note that 188 accessions out of 223 accessions used
for phenotyping indicated sufficient DNA quality for SNP calls. The wheat accessions were
provided by the International Center for Agricultural Research in the Dry Areas (ICARDA),
and were originated from Afghanistan (7), China (1), Iran (164), Iraq (3), Morocco (1), Pakistan
(7) and Syria (5) countries. The pedigree of the 188 wheat genotypes used in this study is given
in supplementary Table.1. For the preparation of inoculum, the collecting of nematodes,
extracting, identifying, incubation of the cysts and obtaining infective juveniles were conducted
as described by Majd Taheri et al., (2019).

Phenotyping Assessment

The phenotypic evaluation was performed in a growth chamber at the Iranian Research
Institute of Plant Protection (IRIPP). Wheat seeds of each accession, were sterilized,
germinated and planted in a plastic tube filled with a mixture of sand, field soil, and organic
matter (70:29:1, v:v:v) arranged in a completely randomized design with five replications. The
wheat cultivars Bezostaya and Sonmez were chosen as the susceptible and resistant checks,
respectively. Each plant was inoculated with 1 mL of inoculum containing 500 fresh second
stage juveniles in a water suspension. After nine weeks, the level of resistance was counted and
categorized into four groups based on the number of white females and cysts, Resistant (R) <
3; Moderately resistant (MR) = 3-7; Susceptible (S) = 7-20; Highly Susceptible (HS) > 20
according to Sharma et al., (2013). Normality of data and Homogeneity of variances were
examined with Shapiro-Wilk test and Levine’s test, respectively. All phenotypic data were
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analysed using Generalized Linear Model (GLM) using statistical software SAS v9.4 and mean

separation was conducted using Duncan’s Multiple Range Test.

Genotyping and Data Preprocessing

Genomic DNA was extracted from fresh leaves using a modified CTAB
(cetyltrimethylammonium bromide) method as described by Saghai-Maroof et al. (1984).
Samples were genotyped by genotyping-by-sequencing (GBS) and Diversity Arrays
Technology (DArT) (Sansaloni et al., 2011) using 152K SNP panel at the Genetic Analysis
Service for Agriculture (SAGA) at the International Maize and Wheat Improvement Center
(CIMMYT), Mexico. The quality of genotypic data were curated by removing SNPs with
minor allele frequency (MAF) less than 0.05 and missing data more than 20% from the
subsequent analysis (Bhatta et al. 2018), and the heterozygous data were considered as missing
data (Mourad et al. 2018; Pariyar et al. 2016), which left a set of 10,471 polymorphic SNP
markers with known chromosomal position (based on Chinese spring map of IWGSC RefSeq
v1.0 assembly (Appels et al., 2018)) for further analysis.

Analysis of Population Structure

The 840 SNP markers were selected based on physical position on chromosomes (A, B and
D) from the total 10,471 markers with known chromosomal positions. Population structure
analysis was performed using a Bayesian model in software STRUCTURE v2.3.4 (Pritchard
et al., 2000), where number of populations (K) were assumed from 1 to 10 using 100,000 burn
iterations followed by 100,000 Markov-Chain Monte Carlo (MCMC) iterations. Process was
repeated 5 times for each K. Output was visualized using STRUCTURE harvester and the
optimal K value was identified based on the LnP(D) and Evanno’s AK (Evanno et al., 2005).

Linkage Disequilibrium Association mapping

Linkage disequilibrium and Genome-Wide Association Study, GWAS were implemented
using 10,471 SNPs with known chromosomal positions. Chinese Spring genome map IWGSC
RefSeq v1.0 assembly was used as the reference genome (Appels et al., 2018). A mean pairwise
r for the 21 chromosomes was determined. The LD heat maps plot for significantly associated
SNPs was constructed by using Haploview software 4.2 (Broad Institute, Cambridge, MA).
GWAS was conducted using the General linear model (GLM) and Mixed linear model (MLM)
(Q+K) in TASSEL v. 5.2.51 (Bradbury et al., 2007). The Q matrix was adapted from the K=2
for association mapping for controlling spurious results due to population stratification as a
major issue in GWAS. TASSEL software was employed to estimate kKinship matrix and the
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association analyses were carried out to generate Manhattan and quantile-quantile plots (Q-Q
plot). A threshold P-value of 0.001 (—log10P= 3) was applied to declare significant SNPs for
marker-trait association results. The phenotypic variation (R?) was estimated for significant
markers. To reduce the false discovery rate, FDR was implemented at 0.001 level in SAS v 9.4
(SAS Institute Inc., Cary, NC, United States).

RESULTS AND DISCUSSION

Wild relatives of wheat are important sources of disease resistance. In recent years, different
types of molecular markers have been applied to study the genetic traits in many crops i.e.,
barley (Hordeum vulgare L.), maize (Zea mays L.), potato (Solanum tuberosum L.), rice (Oryza
sativa L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum bicolor L.) Moench), tomato
(Lycopersicon esculentum Mill.) and wheat (Triticum aestivum L.). SNP chips were mostly
applied in GWAS which makes it easier to identify QTLs associated with certain traits. OUF
raw data and variances were normal and homogeneous, respectively. The analyses of
phenotypic data revealed significant differences among the accessions for resistance to H.
filipjevi (Table 1). The 35 % of wheat accessions showed resistant (R) reaction to H. filipjevi,
44% of the accessions were moderately resistant (MR) and 21% were susceptible (S) (Figure
1). Most of the Iranian genotypes indicated moderately resistant (45%) trait (Majd Taheri et
al., 2019). Of the 10,471 SNPs found to be highly associated with resistance to H. filipjevi,
4,096 (39%), 4,739 (45%), and 1,636 (16%) SNPs were recorded on the AA, BB, and DD

genomes, respectively (Figure 2). A/A@nd BB genomes have'a higher distribution of SNPS than
all; 120197 Rabieyan et al., 2022, Tefiseen et'al;2022)| The minimum number of SNPs were

associated with resistance to H. filipjevi from chromosome 4D (147 SNPs) and most numbers
of SNPs were from 2B (887 SNPs). Population structure analysis implemented using 840
markers, indicated two possible subpopulations, based on the clear peak at k=2 (Figure 3). The
first and second group consisted of 62% and 38% of the wheat accessions, respectively. We
found significant differences among the genotypes for resistance to H. filipjevi. The genetic
diversity of wheat genotypes from our previous experiment revealed the suitability of this
group of wheat genotypes for association mapping studies (Majd Taheri et al., 2019).

Using 10,471 SNPs, linkage disequilibrium (LD) was determined by calculating squared

correlation coefficient (r%) for the 21 chromosomes. \We applied a mixed linear model (MLM)
and  General linear model (GLM) i GWAS analysis! QQ-plots and Manhattan plots of the

GWAS results of both GLM and MLM analysis were compared for resistance trait which are
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shown in Figure 4. Based on the obtained QQ-plot from GLM and MLM models, the Q-Q plot

as a better approach. Manhattan plots represent the profile of the P-value of SNPs in Figure 5.
A total of 11 SNPs significantly associated with resistance to H. filipjevi trait and crossed the
false detection rate (FDR) at p < 0.001 were identified. The phenotypic variation (r?) explained
by the individual SNPs ranged from 7 to 13% (Table 2).

So far, some significant Marker-trait associations (MTAs) were identified on wheat
chromosomes to agronomic characteristics and diseases. This collection of wheat genotypes
has not been utilized for resistance studies to cereal cyst nematode so far, however, GWAS of
diverse panels against H. filipjevi was done by Pariyar et al., (2016) and Dababat et al., (2021).
In the present study, 11 markers were significantly (p-value < 0.001) associating with resistance
to H. filipjevi which were detected on chromosomes No 2A, 3B, 4A, 4B, 5A. 5B, 5D and 6B.
The linkage disequilibrium (LD) analysis for all significantly associated SNPs showed that 3
markers on 4A and 2 markers on 4B Chromosomes were in high intra-chromosomal LD, hence
the 11 SNPs could be reduced to 8. It is noteworthy that the D genome carries only one of all
identified MTAs in this study, likely implies the low level of diversity in the D genome
originated from the late hybridization of Aegilops tauschii during the evolution of common
wheat (Gahlaut et al., 2019). A previous GWAS have demonstrated 11 QTLs on chromosomes
1AL, 2AS, 2BL, 3AL, 3BL, 4AS, 4AL, 5BL and 7BL (Pariyar et al., 2016). Another study
identified QTLs on chromosomes 1A, 2A, 2B, 2D, 3A, 6B, and 6D were detected using a mixed
linear model (MLM) (Dababat et al., 2021). Fourteen genes for resistance to CCN have been
identified which include the following: Crel, Cre2, Cre3, Cre4, Cre5, Cre6, Cre7, Cre8, Cre9,
CreR, CreV, CreX, CreY and CreZ (Ali et al., 2019; Kishii, 2019; Dababat et al., 2021). CCN
resistance genes Crel, Cre2, Cre3, Cre5 (syn. CreX), Cre6, Cre8 and CreR identified in wheat
and its relatives on chromosome 2B, 2A, 2D, 2A, 5A, 6B and 6D, respectively (Slootmaker et
al., 1974; Asiedu et al., 1990; Eastwood et al., 1991; Delibes et al., 1993; Jahier et al., 1996;
Paull et al., 1998; Ogbonnaya et al., 2001). Our results demonstrated three QTLs (on 2A, 5A
and 6B) found on chromosomes with identified resistance genes. Surprisingly Cre8 gene as a
resistance gene to CCN, H. avenae was mapped by Williams et al., (2003) on chromosome 6B,

moreover the effective role of Cre8 in conferring of resistance to CCN, H. fili pjevi in wheat

was emphasized by Imren et al., (2013). OUrfinding Suggests that the markeridentified in this
study may be present in the genomic region of the Cre8 gene, however further evidences are
needed to confirm the exact oci. Similar to the present study some QTLs that confer resistance
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against other cereal nematodes were recently reported on wheat, i.e. in H. avenae on
chromosomes 5A, 5B, 5D and 6B, in root lesion nematodes, P. neglectus on chromosomes 3B,
4A and 6B, P. thornei on chromosomes 2A, 3B and 5B (Dababat et al., 2016).

capability of inducing resistance to plant against several traits, is a valuable resource in

Importantly, it is obvious that a QTL with

breeding programs.

Based on the results, the use of populations from different genetic backgrounds provide further
progress in identifying valid QTLs. The findings of present study demonstrated valuable
sources of resistance in the studied wheat genotypes to a widespread and important species of
CCN in some areas of the crescent fertile region for inclusion in future breeding programs by

new resistance gene resources.
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387
388  Table 1. Analysis of variance of the reaction of wheat genotypes to Heterodera filipjevi using
389  Generalized Linear Model (GLM).
Source Degrees of freedom  Mean of square F value Pr>F
Genotype 225 1.15 3.60 <0.0001
Error 904 0.32 - -
Cv? - 25.09 - -
390  ?2Coefficient of variation.
391
392  Table 2. Single nucleotide polymorphisms (SNPs) significantly associated with resistance to
393  Heterodera filipjevi.
No. SNP Marker CHR POS (bp) FDR Pvalue  Allele Allelic effect R? (%) cM
1 3034005 2A 7919418 0.00060  0.00007 TIC -0.49 10 8
2 1106119 3B 183514671 0.00070  0.00034 TIG 0.89 13 -
3 2262587 4A 374449717 0.00060  0.00017 CIT 0.42 10 -
4 1220611 4A 430870112 0.00070  0.00046 TIC -0.41 8 -
5 2266236 4A 433757511 0.00070  0.00037 G/A -0.40 8 27
6 1128101 4B 605941582 0.00100  0.00081 G/A -0.49 8 -
7 1244896 4B 608261318 0.00060  0.00023 CIG 0.52 9 45
8 1098989 5A 480788416 0.00100  0.00097 G/IC 0.57 7 51
9 1209179 5B 506087964 0.00060  0.00011 AIG -0.91 9 48
10 2260283 5D 380840282 0.00100  0.00096 G/A 0.52 7 -
11 1091272 6B 79045627 0.00070  0.00051 A/G -0.42 8 23
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Fig 3. A: Graph of delta K values showing highest probability at number of groups (K= 2) and
B: Estimated population structure of 188 wheat genotypes on k= 2.
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Fig 4. QQ (Quantile-Quantile) plots, Red line represents the observed P values using the GLM
(Q) model and green line represents the observed P values using the MLM (Q + K) model.
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Fig 5. Manhattan plots of P values showing genomic region of wheat genotypes associated
with Heterodera filipjevi resistance. The X-axis represents the position of markers over the
wheat chromosomes and Y-axis represents -log10 (P-values) of the marker-trait association.
Each Point in the plot represents a SNP marker. The red line represents the threshold for
genome-wide significance. Markers with —log10 (P-values) above the threshold are candidates.
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