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Comparing the Validity of Statistical and Knowledge-Based 
Methods for Landslide Susceptibility Mapping 

J. Mosaffaie1*, A. Salehpour Jam1, and M. R. Tabatabaei1  

  ABSTRACT 

In the Shahroud Watershed, there has been an increasing occurrence of landslides that 
have caused a lot of human and financial losses. Therefore, landslide susceptibility 
zonation is crucial for reducing landslide risk. The aim of this study was to compare the 
Landslide Susceptibility Maps (LSMs) of different methods. Therefore, thematic layers of 
the ten causal factors were prepared. Then, a landslide inventory map consisting of 104 
landslides covering 1401 hectares was compiled and partitioned into two subsets including 
70% for training and 30% for testing purposes. Three landslide susceptibility maps were 
prepared using the Frequency ratio (Fr), Statistical index (Si), and Analytic Hierarchy 
Process (AHP) methods. The validation process showed that the Si [Area Under the 
Curve (AUC)= 0.732] and Fr (AUC= 0.707) models presented a more valid LSM than 
AHP (AUC= 0.651) method. The Qs (Quality sum) index values also confirmed the results 
of the ROC (Receiver Operating Characteristic) curve such that the Qs index values of 
1.71, 1.43, and 0.62 for, respectively, Fr, Si, and AHP models implied a more accurate 
LSMs of the Fr and Si models than the one from the AHP. The results of this study can be 
used as a basic step for landslide risk management in the study area. 

Keywords: Analytic Hierarchy Process, Bivariate statistic, Landslide hazard, Shahroud, 
Zonation. 

INTRODUCTION 

Landslides are among the most damaging 
natural disasters that commonly cause many 
socio-economic problems, especially in 
mountainous regions (Armin et al., 2019; 
Mosaffaie and Salehpour Jam, 2021). They 
have significant adverse impacts on people’s 
lives, property, farmlands, infrastructures, 
and natural environments (Joybari et al., 
2017; Mosaffaie and Salehpour Jam, 2018). 
According to the Iranian landslide working 
party, 187 people were killed and losses 
were estimated at 12,700 dollars until the 
end of September 2007(Gholami et al., 
2019; Mosaffaie et al., 2015).  

Causal analysis and zoning of natural 
hazards are essential for managing 
environmental issues (Karimi Sangchini et 

al., 2022; Soltani et al., 2023). In this 
regard, identification of susceptible areas is 
crucial for reducing landslide-associated 
damages (Salehpour Jam et al., 2023). 
Landslide susceptibility zonation can help 
managers and decision-makers to reduce 
landslide risk through land use change or by 
preventing construction in landslide-prone 
areas (Karimi Sangchini et al., 2022; 
Morady et al., 2010; Mosaffaie et al., 2023; 
Salehpour Jam and Mosaffaie, et al., 2021a, 
2021b; Salehpour Jam et al., 2023; 
Sangchini et al., 2016). Landslide 
susceptibility assessment methods can be 
classified into two main categories: (1) 
Statistical methods and (2) Assessments 
based on expert knowledge (Pradhan et al., 
2010). Statistical methods establish a 
correlation between the landslide formation 
and affecting factors and use statistical 
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analysis to assess landslide susceptibility 
classifications quantitatively (Dou et al., 
2015; Pourghasemi et al., 2012). Among the 
most common statistical models are 
frequency ratio (Yalcin et al., 2011), 
Artificial Neural Network (ANN) (Dou et 
al., 2015; Pradhan et al., 2010), decision tree 
approach (Saygin et al., 2023), logistic 
regression (Pourghasemi et al., 2013; 
Pradhan and Youssef, 2010), statistical 
index (Si) (Gholami et al., 2019; Ozdemir 
and Altural, 2013; Santos, 2015), fuzzy 
gamma operators (Gholami et al., 2019; 
Kanungo et al., 2006; Lee, 2007; Mosaffaie 
et al., 2020; Pourghasemi et al., 2012; 
Pradhan et al., 2009). The second category, 
which is subjective to some extent, requires 
a rating system based on experts’ knowledge 
and experience to assess LS qualitatively. 
Some examples for these experts’ 
knowledge-based methods are Analytic 
Hierarchy Process (AHP) (Abay et al., 2019; 
El Jazouli et al., 2019; He et al., 2019; 
Nguyen and Liu, 2019; Pourghasemi et al., 
2012; Ruff and Czurda, 2008; Salehpour 
Jam, et al., 2021; Yalcin et al., 2011), 
weighted linear combination (Chen et al., 
2017), data mining techniques (Chen et al., 
2018; Oh and Lee, 2017), and empirical 
models (Armin et al., 2019).  

Despite the existence of numerous models 
for landslide susceptibility assessment, there 
is no universally accepted model and it is 
important to choose an appropriate model 
for landslide susceptibility evaluation. In 
this regard, although different methods have 
been compared in many studies, little 
research has been conducted to compare 
knowledge-based methods with other 
statistical methods. Therefore, it can be 
hypothesized that these two groups of 
methods do not have the same validity.  

The main aim of this study was to 
compare the performance of AHP as a 
knowledge-based method with two widely 
accepted statistical models including 
frequency ratio and statistical index at 
Shahroud Watershed as a hotspot area in 
landslide occurrence. The landslide 
susceptibility map resulting from the more 

valid model will be very useful for better 
management of the watershed. 

MATERIALS AND METHODS 

Description of the Study Area 

Shahroud Watershed is one of the main 
tributaries of the Sefidrood River that covers 
the northern part of Qazvin Province in Iran 
(Figure 1). This mountainous watershed 
with an area of 1947 km2 covers about 22% 
of Qazvin Province. The average annual 
rainfall of the watershed is 392 mm, and 
mostly occurs between January to May. The 
watershed landscape is dominantly covered 
by rangelands and other land uses of the 
watershed are residential, dry farming, 
irrigated farming, orchards, forest, and bare 
lands (Mosaffaie, 2016). The existence of 
landslide predisposing factors such as 
mountainous topography, seismicity, and 
high relative seismic seismicity, landslide-
sensitive geological formations, semi-humid 
climate, road construction, and conversion 
of rangelands to orchards have caused 
numerous destructive landslides in this 
watershed. Therefore, preparing landslide 
susceptibility map with a suitable model is 
necessary for better watershed management. 

This study involved four main steps: 
Preparing the landslide causal factors, 
mapping the spatial distribution of 
landslides, landslide susceptibility analyses 
using selected methods, and, finally, 
evaluating the validity of the used methods. 
The ArcGIS 10 software was used for 
preparing different digital layers and 
crossing them. Conceptualization of the 
study has been illustrated in Figure 2. 

Landslide Inventory Map  

The Landslide Inventory Map (LIM) 
shows the characteristics of the landslides 
that have occurred in the past (Yalcin et al., 
2011). In this study, the LIM was prepared 
using two characteristics of landslides  
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including location and area. A preliminary 
LIM was first produced using the geologic 
maps, interpretation of aerial photos 
(1:20,000 scale), historical imagery of 
Google Earth, and landslide database of the 
Forests, Rangelands, and Watershed 
Management Organization of Iran. In the 
next step, all landslides of preliminary LIM 
were re-examined during extensive field 

visits, which lasted about 3 months, and the 
final LIM was prepared. It should be noted 
that this research was considered only 
rotational landslides, therefore the LIM map 
does not include other types of mass 
movements such as creep, rock fall, etc. 
Two examples of landslides investigated in 
the study area are shown in Figure 3. 

 
Figure 1. Location map of Shahroud Watershed in Iran. 

 
Figure 2. Conceptualization flowchart of the study. 
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(a) (b) 

Figure 3. Two landslides that occurred and their damages: (a) South of Yaroud and (b) South of Viar 
Villages. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 4. The maps of landslide causal factors in the study area. 
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factor, and n is the category number of the 
causal factor. The interpretation of the 
resulted values of the Frs is easy and 
understandable. Fr values greater than 1 
indicate a higher probability of landslide 
occurrence (higher correlation) and values 
less than 1 indicate a lower probability of 
landslide occurrence (lower correlation).  

Statistical Index (Si) 

The statistical index method uses a 
bivariate statistical approach to calculate 
landslide susceptibility index (Van Westen, 
1997). This method is based on the 
statistical correlation between the LIM and 
each class of causal factors. Therefore, the 
Si values, which is the natural logarithm of 
the landslide density in the categorical unit 
divided by the landslide density of the entire 
map, are calculated for each class of causal 
factors (Equation 3). Then, the Landslide 
Susceptibility Index (LSI) is calculated 
through the summation of Sis (Equation 4). 

𝑆𝑖 = 𝐿𝑛 ቀ
ௗ௘௡௦௖௟௔௦௦

ௗ௘௡௦௠௔௣
ቁ =

𝐿𝑛(
௅೔

஼೔
ൗ

∑ ௅೔
೙
೔సభ

∑ ஼೔
೙
೔సభ

൘
)    (3) 

LSI =  ∑ 𝑆𝑖     (4)  
Where, densclass is the landslide density 

of each class, and densmap is the landslide 
density within the entire map. In this study, 
the LIM was crossed separately with every 
causal factor map to obtain the parameters of 
this method equation. This method also 
presents understandable result where 
positive values of Si imply a higher 
probability of landslide occurrence and, on 
the contrary, negative ones indicate a lower 
probability of landslide occurrence.  

AHP Method 

The determination of the relative 
importance levels of the criteria can be 
achieved by employing Multi-Criteria 

Decision Analysis (MCDA) methods. The 
Analytic Hierarchy Process (AHP) is one of 
the MCDA methods frequently cited in the 
literature (Turan et al., 2020). This method, 
which was introduced by Saaty (1980), is an 
easily understood and flexible method to 
analyze complicated problems such as 
landslide susceptibility. In this study, a scale 
from1-9 was used for pair-wise comparisons 
and, if the factors had an inverse 
relationship, a scale of 1/2 -1/9 was used. 
The Consistency Ratio (CR), which is used 
to examine the possibility of ranking the 
factors, was also calculated by Equation (5). 

 𝐶𝑅 =
஼ூ

ோூ
    (5) 

Where, CI and RI are, respectively, 
Consistency Index and Random Consistency 
index proposed by Saaty (1980). Finally, the 
various causal factors were integrated based 
on the weighted linear sum equation 
(Equation 6) and the Landslide 
Susceptibility Index (LSI) was produced.  

 𝐿𝑆𝐼 = ෍ 𝑊௜  ∗  𝑋௜௝

௡

௜ୀଵ
  (6) 

Where Wi is the Weight of ith factor, Xij 
is the weight of the jth category of ith factor 
and n is the number of factors. The LSI 
value ranges in [0, 1] and the greater its 
value means the higher the LSI. 

Validation 

To compare the accuracy of the resulting 
maps, we applied two validation methods by 
using the 30% testing subset: (1) Receiver 
Operating Characteristic (ROC) curve and 
(2) Indices of Density ratio (Dr) and Quality 
sum (Qs). 

In the ROC method, n+1 thresholds are 
firstly defined for a landslide susceptibility 
index with n classes (TJPrl, 2006). The first 
threshold is lower than the minimum LSI 
and the last one is higher than the maximum 
LSI. Each threshold made a matrix in which 
four types of points are defined: True 
Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN). TP 
and FN points are, respectively, the 
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landslides within the classes above and 
below the threshold value. Conversely, the 
points of TN and FP are, respectively, stable 
points within the classes below and the 
threshold. For each threshold, two statistics 
called True Positive Rate (TPR) and False 
Positive Rate (FPR) are calculated based on 
the numbers of these points as follows: 

 𝑇𝑃𝑅 =
்௉

்௉ାிே
       𝑎𝑛𝑑      𝐹𝑃𝑅 =

ி௉

்ேାி௉
     (7) 

The ROC curve is drawn by plotting the 
TPR on the y-axis against the FPR on the X-
axis. The Area Under the Curve (AUC) is an 
indicator to assess the validity of the model 
such that the higher the area under the curve, 
the more valid the model is. The AUC 
values range from 0.5 to 1. An AUC of 0.5 
indicates the poor prediction and an AUC of 
1 implies perfect prediction.  

Based on Dr and Qs indices (Equations 8 
and 9), a more valid LSM is a map that 
creates a better distinction between high-
density and low-density landslide areas. Dr 
indicator is the ratio of landslide density in 
each susceptibility class to landslide density 
in the whole study area. A slight deviation of 
Dr values from the mean value indicates a 
slight difference in landslide density of 
different classes and, as a result, the value of 
the Qs index will be low. According to this, 
the higher Qs values indicate higher validity 
of the LSM.  

 

100*

1

1

Ai
Si

Ai
Si

Dr

n

n






  (8) 

 
   


n

i
SDrQs

1

21
 (9) 

Where, Si is the landslide area within the 
i-th class of LSM, Ai is the area of the i-th 
class of LSM, S is the ratio of susceptibility 
class area to the whole area and n is the 

number of LSM classes.  

RESULTS 

In Shahroud Watershed, 104 landslides 
with a total area of 1401 hectares were 
recorded (Figure 1). The areas of the 
smallest and largest landslides are 0.1 and 
397 hectares, respectively. The mean and the 
standard deviation of the area of landslides 
are also equal to 13.4 and 42.5 hectares, 
respectively. A statistical summary of the 
landslides used as training and testing 
subsets is given in Table 1.  

Table 2 included the calculated different 
parameters, which were applied for LSI 
production of different models. The values 
of CR calculated in the pairwise comparison 
matrixes of AHP method range from 0.022 
to 0.093 (Appendix I). Considering that all 
CR values are less than 0.1, the consistency 
levels are acceptable (Saaty, 1980). 

The LSMs of the used models are 
illustrated in Figure 5. The area of different 
susceptibility classes for each LSM along 
with the corresponding landslide area within 
each class are also presented in Table 3.  

The ROC curves of LSMs produced by 
different models are illustrated in Figure 6. 
The AUC values of the ROC curve for Fr, 
Si, and AHP models are equal to 0.707, 
0.732, and 0.651, respectively. It is 
concluded that the LSMs derived from Si 
and Fr models have good accuracy and the 
LSM of the AHP model has moderate 
accuracy in predicting the landslide 
susceptibility of the Shahroud Watershed. 

The chart of density ratio for LSMs 
derived from used models is presented in 
Figure 7a. This chart shows an ascending 
trend of the Dr indicator from low-risk 
classes to high-risk classes. Therefore, it can 
be concluded that all three LSMs have been  

Table 1. The area (ha) and count of the landslides used as training and testing subsets. 
 

Landslide inventory map  Train (70%) Test (30%) 
Count Area Count Area Count Area 
104 1401.3 73 982.8 31 418.5 
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Table 2. The area of causal factor categories, landslides within each category. 

Factor Category 
Area 
(ha) 

Landslide area 
(ha) 

Fr Si 
AHP weight 
class factor 

Sl
op

e 
(D

eg
re

e)
 0-5 11634.3 0 0.0 none 0.029 

0.201 

5-15 46727.5 261.08 1.11 0.10 0.046 
15-25 60250.2 375.26 1.22 0.20 0.076 
25-35 51946.0 240.80 0.92 -0.08 0.144 
35-45 19483.2 88.07 0.90 -0.11 0.278 
45< 4699.7 16.14 0.68 -0.38 0.427 

A
sp

ec
t 

F 1690.6 14.07 1.65 0.50 0.023 

0.029 

S 24994.3 219.29 1.74 0.55 0.033 
SW 25698.1 225.44 1.74 0.55 0.043 
SE 20274.0 130.81 1.28 0.25 0.060 
W 20967.9 79.50 0.75 -0.29 0.088 
E 22801.9 40.75 0.35 -1.04 0.097 

NW 26919.7 54.15 0.40 -0.92 0.168 
NE 24433.0 66.59 0.54 -0.62 0.168 
N 26651.1 150.74 1.12 0.11 0.319 

A
lti

tu
de

 (
m

) 

300-900 20750.3 4.58 0.04 -3.13 0.047 

0.022 

900-1500 76093.1 286.61 0.75 -0.29 0.074 

1500-2100 66112.7 552.17 1.65 0.50 0.145 

2100-2700 22973.1 135.24 1.17 0.15 0.382 

2700-3300 8260.5 0 0.0 none 0.208 

3300-3900 530.1 2.75 1.03 0.03 0.144 

M
ea

n 
an

nu
al

 r
ai

nf
al

l 
(m

m
) 

150-250 9398.5 35.72 0.75 -0.28 0.043 

0.107 

250-350 39817.9 410.57 2.04 0.71 0.065 

350-450 63569.3 382.25 1.19 0.18 0.094 

450-550 47534.3 126.60 0.53 -0.64 0.156 

550-650 20976.5 26.20 0.25 -1.40 0.256 

650-750 9232.6 0 0.0 none 0.386 

PG
A

 (
g)

 

0.233-0.248 24929.4 42.81 0.34 -1.08 0.051 

0.072 
0.248-0.262 50862.8 717.11 2.79 1.03 0.078 

0.262-0.276 57959.1 132.59 0.45 -0.79 0.175 

0.276-0.290 48292.1 56.14 0.23 -1.47 0.272 

0.290-0.305 12364.6 32.70 0.52 -0.65 0.424 

D
is

ta
nc

e 
to

 f
ou

lt
 (

m
) 0-250 68529.2 329.81 0.95 -0.05 0.361 

0.047 

250-500 41659.4 249.15 1.19 0.17 0.254 

500-1000 42367.3 317.12 1.48 0.39 0.183 

1000-2000 29836.5 84.37 0.56 -0.58 0.110 

2000-3500 10229.7 0.52 0.01 -4.60 0.060 
3500-5500 1834.3 0.38 0.04 -3.19 0.033 

D
is

ta
nc

e 
to

 
st

re
am

 (
m

) 

0-25 64407.8 392.83 1.21 0.19 0.483 

0.053 

25-50 52338.3 293.96 1.11 0.11 0.282 

50-100 52288.1 222.26 0.84 -0.17 0.111 

100-200 22166.8 61.47 0.55 -0.60 0.078 

200< 3255.4 10.83 0.66 -0.42 0.047 

Table 2 continued 
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Continued of Table 2. The area of causal factor categories, landslides within each category. 

Factor Category 
Area 
(ha) 

Landslide area 
(ha) 

Fr Si 
AHP weight 
class factor 

D
is

ta
nc

e 
to

 r
oa

d 
(m

) 

0-25 8831.7 34.83 0.781 -0.247 0.379 

0.060 

25-50 8229.9 35.62 0.858 -0.153 0.273 
50-100 14969.3 77.48 1.026 0.025 0.159 

100-200 25762.9 175.26 1.348 0.299 0.103 
200-400 40404.2 233.75 1.146 0.137 0.055 

400< 96258.3 424.40 0.874 -0.135 0.032 

L
an

du
se

 Bare land 1280.0 21.47 3.323 1.201 0.035 

0.131 
Dry farming 26083.3 149.19 1.133 1/8 0.069 

Forest 8886.0 72.34 1.613 0.478 0.151 
Irrigated farming 10390.2 178.51 3.404 1.225 0.248 

Rangeland 147817.0 559.84 0.750 -0.287 0.497 

L
ith

ol
og

y 
su

sc
ep

ti
bi

li
ty

 

Very low 19600.0 15.67 0.158 -1.842 0.035 

0.280 

Low 89082.8 68.01 0.151 -1.889 0.069 

Moderate 32565.8 161.77 0.984 -0.016 0.151 

High 18189.6 92.24 1.005 0.005 0.248 

Very high 35019.7 643.65 3.642 1.293 0.497 

      

 
(a) 

 
(b) 

 
(c) 

Figure 5. Landslide susceptibility maps developed by models: (a) Frequency ratio (Fr), (b) Statistical 
index (Si), and (c) Analytical Hierarchy Process (AHP). 
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Table 3. The area (ha) of landslides within each susceptibility class: Ai (area of susceptibility class) and 
Si (area of landslide within each susceptibility class). 

      
Model 

Class 

Fr Si AHP 

Ai Si Dr Ai Si Dr Ai Si Dr 

Very low 3037.3 1.2 0.18 606.8 0.0 0.00 11590.8 0.5 0.02 
Low 105664.8 68.2 0.30 11247.7 2.1 0.09 90565.2 79.9 0.41 
Moderate 64576.6 167.1 1.20 89264.3 49.3 0.26 56464.7 149.1 1.23 
High 19418.2 136.9 3.28 81093.8 230.1 1.32 33314.4 170.9 2.38 
Very high 2043.0 45.2 10.30 12527.5 137.4 5.10 2804.8 18.6 3.09 
Mean 38948.0 83.7 3.05 38948.0 83.8 1.35 38948.0 83.8 1.43 
St.Dev. 45113.5 67.7 4.24 42554.1 98.9 2.16 35558.6 75.9 1.30 

 

 

Figure 6. ROC curves of LSMs produced by different models. 

  

Figure 7. Density ratio (Dr) and Quality sum (Qs) of LSMs derived from different models. 
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regions usually predict relatively more 
observed landslides. For example, by Fr 
model, the very high susceptible class, 
which covers only 1.05% of the watershed, 
has predicted about 10.8% of the observed 
landslides. This makes the Dr indicator have 
an ascending trend from low susceptible 
classes to high susceptible classes and 
implies that all three LSMs have been 
classified correctly.  

This study showed that LSMs obtained 
from two statistical models are more valid 
than the LSM derived from the AHP 
knowledge-based method. In the AHP 
model, the slight deviation of Dr values 
from the mean value has caused this model 
to have a smaller Qs index, which implies 
less validity of the LSM obtained from the 
model. The higher validity of the statistical 
models is confirmed also by the results of 
ROC curves where more values of AUCs 
have been calculated for the statistical 
models. In this regard, previous studies have 
achieved similar results (Pourghasemi et al., 
2012; Sangchini et al., 2016; Yalcin et al., 
2011).  

The higher accuracy of the used statistical 
models is due to the fact that these models 
include the complexity and interaction of 
various factors affecting the occurrence of 
landslides (Lee and Pradhan, 2007; Van 
Westen, 1997). In statistical methods, the 
weight of classes is calculated based on the 
previous landslides that have occurred due 
to the interaction of various causal factors. 
Based on this, it can be inferred that, in 
statistical methods, the weights assigned to 
classes inherently include the interactions of 
causal factors and the complexities of their 
occurrence. However, in the pairwise 
comparisons performed in the AHP method, 
the preference values of classes are assigned 
only based on their effect on the occurrence 
of landslides and without considering the 
interaction of various causal factors. 
Therefore, it can be seen in Table 2 that the 
weights of classes for each causal factor 
have a regular ascending or descending 
order, which can be seen similarly in other 
previous studies (Abay et al., 2019; Achu 

and Reghunath, 2017; Pourghasemi et al., 
2012; Ruff and Czurda, 2008; Yalcin et al., 
2011).  

According to Table 2, this ascending or 
descending order does not exist for the 
calculated Fr and Si values, except for slope, 
especially lithology factors. The reason for 
the exception of lithology and slope factors 
is the greater contribution of these two 
factors than other factors in the occurrence 
of previous landslides. In the Shahroud 
Mountainous Watershed, the existence of 
marl formations related to the Miocene and 
Neogene Periods, which are very susceptible 
to landslides, is the most important factor in 
the occurrence of landslides in the region. 
The greater effect of these two factors can 
be also seen in the assigned weights of the 
AHP method, which are equal to 0.280 and 
0.201, respectively, for lithology and slope 
factors. The higher weights of these two 
factors than other factors have been proven 
in the results of previous research 
(Pourghasemi et al., 2012; Salehpour Jam et 
al., 2021; Yalcin et al., 2011). The 
dominance of the effect of these two factors 
has overshadowed the effect of other factors 
and resulted in the ascending order of Fr and 
Si values for these two factors. However, the 
contribution of factors such as aspect, 
altitude, and distance from linear features 
such as stream, road, and fault in landslide 
occurrence has been affected by factors such 
as lithology, slope, and land use, therefore, 
no order has been established in their Fr and 
Si values. The lower weights of factors such 
as altitude and distance from linear features 
are in line with the results of previous 
studies (Pourghasemi et al., 2012; Salehpour 
Jam et al., 2021; Yalcin et al., 2011). 

CONCLUSIONS 

This study compared the validity of three 
conventional models including Fr, Si, and 
AHP to assess landslide susceptibility in the 
Shahroud watershed as a hotspot region in 
landslide occurrence. Since the causes of 
landslides are many and complex, ten causal 
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factors including slope, slope aspect, 
altitude, land use, lithology, distance to road, 
distance to stream, distance to fault, PGA, 
and mean annual precipitation were entered 
into the analyses. However, in this research, 
some important factors such as soil depth 
and dynamics were not included in the 
analysis due to the lack of relevant data for 
such a large area as the Shahrood watershed. 
The ascending trend of the Dr indicator from 
low-risk classes to high-risk classes showed 
that all three LSMs have been correctly 
classified. Comparing the validity of the 
LSMs using the ROC curve and Qs indicator 
indicated that the two statistical models 
including Fr and statistical index have 
presented a more valid LSM than the 
knowledge-based AHP method. The 
superior LSM resulting from the most 
validated model can be a useful tool for 
planners and policymakers to make better 
decisions for land use planning and 
appropriate spatial location of 
infrastructures. The results of this study can 
also make a significant contribution to the 
landslide literature. 
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 لغزش بندی حساسیت زمین محور پهنه های آماری و دانش مقایسه کارایی روش 

، ا. صالح پورجم، و م. ر. طباطبائییج. مصفای  

  چکیده

بندی ¬لغزش در آبخیز شاهرود خسارات جانی و مالی فراوانی را به بار آورده است. لذا، پهنه¬وقوع مکرر زمین 

های ¬لغزش برای کاهش خسارات ناشی از آن ضروری است. هدف از این تحقیق، مقایسه نقشه- حساسیت زمین

لغزش تهیه ¬ده عامل موثر بر زمینهای موضوعی ¬های مختلف است. ابتدا لایه¬لغزش حاصل از روش¬حساسیت زمین

هکتار تهیه و به دو زیرمجموعه شامل  ۱۴۰۱لغزش به مساحت ¬زمین ۱۰۴لغزش شامل ¬شد. سپس نقشه پراکنش زمین

لغزش با ¬ها تقسیم شد. سه نقشه حساسیت زمین¬درصد برای آزمایش مدل ۳۰ها و ¬درصد برای آموزش مدل ۷۰

ها نشان ¬مراتبی تهیه شد. فرآیند اعتبارسنجی مدل¬خص آماری و تحلیل سلسلههای نسبت فراوانی، شا¬استفاده از روش

های معتبرتری را نسبت به  ) نقشهAUC = 0.707) و نسبت فراوانی (AUC = 0.732های شاخص آماری ( داد که مدل

 ROCنی ، نتایج اعتبارسنجی حاصل از منحQsاند. همچنین مقادیر شاخص  ) ارائه کردهAHP (AUC = 0.651روش 

های نسبت فراوانی،  برای مدل ۰.۶۲و  ۱.۴۳، ۱.۷۱به ترتیب برابر با  Qsکند. براین اساس، مقادیر شاخص  را تایید می

های نسبت فراوانی و شاخص آماری  تر مدل بندی دقیق¬های پهنه¬است که دلالت بر نقشه AHPشاخص آماری، و 

لغزش در منطقه مورد ¬تواند برای مدیریت خطر زمین¬العه میدارد. نتایج این مط AHPنسبت به نقشه حاصل از روش 

  استفاده قرار گیرد.
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