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ABSTRACT

Aspergillus flavus is a major fungal phytopathogen and an opportunistic pathogen to
humans and livestock. The fungus produces immunosuppressive and carcinogenic
aflatoxins that act as a burden in food and feed industries. An earlier phylogenetic
analysis indicated that the cell wall protein, 4. Flavus Mannoprotein 1 (AFLMP1), is
mainly present in Aspergillus section Flavi such as A. parasiticus and A. flavus. This
makes AFLMP1 a great candidate for siRNA-based control of aflatoxigenic fungi in
farms and processing units, and fungal therapy in hospitals. Here and for the first time,
mode of action of a chemically synthesized RNA interference (siRNA) was investigated for
the control of AFLMP1 synthesis. The efficacy of direct uptake of different concentration
of siRNA on spore germination of A. flavus was monitored via Opera High Content
Screening confocal microscope. siRNA caused growth inhibition at lower concentrations
(0.65 nM) and germination failure (more than 90%) at higher concentrations (5 nM),
most likely by interfering in mannoprotein biosynthesis. It is assumed that siRNA
technology can be implemented as a promising suppressive agent in inactivation of target
genes. It can be considered as an intervention in food/feed industries to control the
development and reproduction of fungi to keep the fungal population below hazard

critical points.
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INTRODUCTION

Aspergillus genus holds more than 339
filamentous species that are mainly
saprophyte  (Schubert et al, 2018).
Section Flavi of Aspergillus with numerous
species have had a significant impact on
human. Amongst which, A. parasiticus
and 4. flavus are infamous for producing
aflatoxins found in cereals, nuts, crop roots
and other agricultural products (Arias,
2015). A. flavus is the second most common
cause of aspergillosis, and in its invasive

form, it may lead to death, if no actions are
taken (Van der Fels-Klerx et al., 2019;
Kjerbelling et al, 2020; Vuong and
Waymack, 2020; Warnatzsch et al., 2020).
During COVID-19 pandemic, many of sever
patients suffered  from  pulmonary
aspergillosis, therefore, an initial screening
for Aspergillus infections was suggested
(Wasylyshyn et al., 2021). It seems global
warming has led to greater inclination of
Aspergillosis in recent years (Coleman et
al., 2019). The aflatoxin production
capabilities of 4. flavus make the fungus
even more harmful compared to other fungi
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that only infect and damage crops (Ismaiel
and Papenbrock, 2015; Smith et al., 2017,
Andrews-Trevino et al., 2020; Kyei et al.,
2020). It is estimated that 25% of the food
crops (~100 million tons) worldwide are
contaminated with aflatoxins (Eskola ef al.,
2020).

So far, Good Agricultural Practice (GAP
via means of post-harvest management and
integrated pest management) and Good
Manufacturing Practice (GMP) have failed
to fully control the impact of A. flavus that
results in aflatoxins being present in food
chain. Furthermore, the development of
fungal resistance strains against all
important fungicides that are being used in
agriculture and clinics are considered as
imminent threat (EI-Baky and Amara,
2021). Other new approaches including
siRNA-mediated biocontrol methodologies
(Nakayashiki et al., 2005; and genome
editing tools (reviewed by Sauer er al.,
2016) have started to shed lights on fungal
crop resistance to lower the onset of fungal
spread and their mycotoxin productions.
Along with the development of resistant
cultivars, use of specific antibodies
(Schubert et al., 2018, 2019; Ansari et al.,
2021) have shown to be vital in early
detection of contamination, therefore,
change in the storage conditions are
considered to be necessary in order to avoid
further fungal development. The early
detection allows meeting Hazard Analysis
and Critical Control Points (HACCP)
standards, minimizing the devastating
effects of the fungus. In future, it is expected
that other biological (Masanga et al., 2015;
Schubert et al., 2015), physical (Hossieini et
al., 2016), and chemical (Bai, 2004; Werner
et al., 2020) means would be implemented
in order to collectively minimize the
population of mycotoxin-producing fungi in
food chain.

Host Induced Gene Silencing (HIGS)
through RNAI is a molecular approach to
post-transcriptionally silence the key genes
involved in fungal development (Riechen
2007; Hernandez et al. 2009; Nowara et al.,
2010; Tinoco et al., 2010; Yin et al., 2011;
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Zhang et al., 2011; Koch et al., 2013;
Panwar et al., 2013). For instance, use of
aflR-specific RNAi, a Transcription Factor
(TF) involved in aflatoxin biosynthesis,
reduced the expression of the TF, and
thereby the aflatoxin, by 14-fold (Masanga
et al., 2015). In contrast, transgenic lines
harboring RNAi specific to Pathogenesis-
Related maize seed gene (ZmPRms) were
developed and the plants showed ~2.5-3.5
times more susceptibility to A. falvus with
greater accumulation of aflatoxins (~4.5-7.5
fold) (Majumdar et al., 2017). Although
somewhat contradictory, RNAi technology
has the potential to shed light on the biology
of aflatoxin-producing genes and the
responsive host resistant genes towards
developing the resistant lines.

RNA interference was used to investigate
functional analysis of genes in the aflatoxin
biosynthetic pathway (McDonald et al.
2005; Abdel-Hadi et al. 2011) and the
developmental biology of 4. flavus (Amaike
and Keller, 2009). Earlier works have been
illustrative of transgenic plants with siRNA
to be able to suppress Aspergillus and
Fusarium in production of toxins, when the
relevant fungal genes were targeted
(McDonald et al., 2005; Abdel-Hadi et al.,
2011). siRNA offers the promise of
controlling pests and pathogens in a
sequence-specific manner without adversely
affecting non-target species (Zhang and
Hong., 2019; Wytinck, 2020).

siRNA has been introduced to fungi
(Baldwin et al., 2018) via Polyethylene
Glycol (PEG)-mediated transformation
(Kadotani et al., 2003), microinjections
(Mascia et al., 2014), electroporation
(Rehman et al., 2016), and spray (Wang et
al., 2017). siRNA wuptake from the
environment has been reported in A.
nidulans (Khatri and Rajam., 2007), Botrytis
cinerea (Wang et al., 2016), and 4. flavus
(Nami et al, 2017) that is called
‘environmental RNAi’ (Whangbo et al.,
2008). The detailed mechanism of the
uptake has been described in nematodes
(Rosso et al., 2005; Banerjee et al., 2017).
RNAI can also be delivered to fungus via a
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method known as Spray-Induced Gene
Silencing (SIGS), and sometimes, with the
intervention of nanoparticles, a powerful,
fast, non-GMO, and environmentally
friendly approach, known as ‘RNA
fungicides’ (Wang et al., 2017; Niu et al.,
2021), through which fungal and oomycete
activity/cell division are suppressed to
control the disease or inhibit mycotoxin
production (Wang and Jin, 2017; Song et al.,
2018).

The extent and longevity of the reduction
in abundance of fungal genes by means of
siRNA (Khatri and Rajam, 2007; Jochl et
al., 2009) depends on its uptake efficiency
that is mostly species- and size-dependent,
half-life in host, and the possibility of signal
amplification by the host (Wytinck, 2020).
However, the exact mechanism by which
exogenous RNAs enter the fungal cells is
not fully understood. When using Host-
Induced Gene Silencing (HIGS), the
identification of suitable targets is
sometimes the greatest challenge (Ebenezer,
2020). RNA-based disease therapeutics have
been effective in both agriculture and
therapeutic  development for humans
(Lieberman et al., 2018). The first SRNA
drug, ONPATTRO (Akinc et al., 2019), and
two of COVID-19 vaccines, developed by
Pfizer and Moderna, were small RNA
molecules targeting mRNAs (Forni et al.,
2021). Along with clinical applications,
RNA based technologies potentially can
reduce the use of pesticides as an added-
value  strategy in  integrated  pest
management (Mezzetti et al., 2020; Taning
etal., 2021).

Here, controlling of AFLMPI mRNA was
performed via application of different
concentrations of chemically synthesized
27-mer RNA duplex RNAi to inhibit A4.
falvus. Phylogenetic analysis indicated that
AFLMP1 that encodes a highly antigenic
cell wall protein of 4. flavus (Aflmplp)
contains 273 amino acid residues, is
exclusively present in Aspergillus section
Flavi (Woo et al., 2003). This cell-surface
protein is homologous to proteins of A.
fumigatum (Afmplp) and Penicillium
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marneffei (Mplp) present on their cell wall
(Cao et al. 1998; Woo et al., 2003; Wang et
al., 2012). Aflmpl is the major cell wall
galactomanoprotein of A. flavus that is
located on the surface fungi hyphae revealed
by indirect immunofluorescence (Figure 1).
Aflmpl is involved in cell wall assembly
with roles in cell adhesion, the transportation
of ions and nutrients, and cell-cell
recognition (Ansari et al., 2021). It can be
considered as a suitable target and excellent
candidate for the RNAi-based control of
aflatoxigenic fungi. Additionally, it may
provide a ground for the biocontrol of the
fungal population and reduced infection rate
by intervention of new molecular methods.
These can be envisaged as either via
transgenesis of crops or through spraying
over the formulations bearing RNAi within.
Furthermore, RNAi can be used in fungal
therapies within health-care units (Nolke et
al., 2016).

MATERIALS AND METHODS

Fungal Strain and Spore Collection

A. flavus (DSMZ strain 818) was obtained
from DSMZ (Braunschweig, Germany). It
was cultured on potato dextrose agar
(Merck, Darmstadt, Germany) medium at
37°C in dark for 4-7 days. The spore
suspension was prepared in 15 mL dH,O
and filtered to separate mycelia over three
layers of Miracloth™ (Merck, Darmstadt,
Germany) after repeated washing by dH,O.
The spores were centrifuged at 5,000xg at
22°C for 1 minute, and stored at 4°C. The
concentration of spore suspension was
determined according to Caligiore-Gei and
Valdez (2015) using a Neubauer chamber
(Hagen, Germany).

AFLMP1-Specific siRNA Synthesis

A machine-learning based algorithm
developed by Ambion
(https://www.thermofisher.com) was used to
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Figure 1. Schematic representation of fungal cell wall structure. Mannoprotein (Aflmplp in this
context) is located on hyphal surface, which contains a serine- and threonine- rich region for O-

glycosylation.

develop a 27-mer AFLMP1-specific siRNA

[Sense:
5'AGCAGGCTATCGATGACATTATCGC
CA3’ and Antisense:

3'TGGCGATAATGTCATCGATAGCCTG
CT5']. The synthesized strands were HPLC
purified via a desalting column (MP1)
according to the manufacturer’s instruction
(https://www.thermofisher.com/de/en/home/
life-science/rnai.html) and resuspended in
sterile RNase-free ddH,O to have
concentrations of 0.65, 1.25, 2.5 and 5 nM.

Spore Germination and siRNA Transfer

The effect of synthetic siRNA was
examined via direct uptake by A. flavus to
analyze spore growth inhibition. Serial
dilutions of siRNA (20 pL) were added to
80 pL of spore suspension (200 spores mL™
RPMI medium, Merck, Germany). The
treatment of putative fungal spores with
0.65-5.0 nM AFLMP1 duplex siRNA in 2%
(w/v) RSA pre-blocked black 96-well
Greiner-uClear plate was performed under
sterile condition. The mycelial growth of
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untreated controls [H,O and an unrelated
Negative Control siRNA (NC-siRNA),
RPMI, and 1xPBS (2.7 mM KCI, 137 mM
NaCl, 10 mM Na,HPO,, and 1.8 mM
KH,PO,.)] and siRNA treated samples were
measured after the incubation of the plates at
37°C in three different time points (12, 18
and 36 hours). The experiments were
repeated thrice with three replicates in each
experiment.

Monitoring siRNA Effect on Fungal
Growth

Calcofluor White (20 pL of 1:20 in H,O;
Sigma) was used for fungal cell wall
staining. In each fungal spore containing
well of microtiter plate, Calcofluor White
was added and gently mixed for 10 minutes
at 22°C. Spore cell walls were imaged by
Opera® system (Emission 440
nm/Absorption 355 nm) and processed by
Imagel] software (NIH, Bethesda, USA). The
surface of each cavity (~ 90%) was
evaluated by the Opera® system; the image
data were converted into statistically
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relevant information (Figure 4) in order to
support the effect to the siRNA inhibition.
To avoid image artifices and to calculate the
actual surface coverage of the generated
fluorescence images, Image] was used.
Based on the shape of the spores and the
mycelium, the image artifacts of all
generated images were excluded by applying
an algorithm (Particle size: 20-oo;
Roundness: 0.0-0.5 nm) from the calculation
of the relevant surface cover based on the
pixel (PX?).

RESULTS AND DISCUSSION

Spore germination and growth retardation
was monitored by Opera® system for all
concentrations for a period of 36 hour. The
visual results recorded by Opera High Content
Screening microscope confirmed the inhibition

2.5nM

12h

18 h

36 h

of A. flavus spore germination and mycelial
elongation retardation after 12 and 18 hours of
incubation with different concentrations (0.65,
1.25, 2.5, 5.0 nM) of synthetic short interfering
RNA (siRNA). siRNA showed prolonged
spore germination (> 90%), when the spores
inspected at 12 hours post-treatment. At 36
hours siRNA treatment, spores germinated
only at 0.65 nM and Calcofluor White staining
showed branched hyphae (Figure 2). However,
when ungerminated spores were treated with
different concentrations (0.65, 1.25, 2.5, 5.0
nM) of 1xPBS, dd H,O, RPMI and unrelated
siRNA (NC) after 12, 18 and 36 hours, we
could not see any inhibitory effect in spore
germination and germ tube growth (Figure 3).

After observing the whole stained mycelia
with calcofluor under confocal microscope,
relative surface coverage (%) was calculated
by Image J. The graphical records after 12
and 18 hours (Figure 4) postulated

1.25nM 0.65 nM

Figure 2. Effect of RNAIi on the growth of 4. flavus. Microtiter plates were inoculated with spores of A.
flavus (200 spores/well) with RNAi (0.65 to 5.0 nM) for 12, 18 and 36 houra at 37°C incubated at dark.
After adding Calcofluor White (1:20), stained hyphae were visualized by confocal microscope system in
Opera® High Content Screening. Exemplified are fluorescence micrographs at a concentration of 0.65, 1.25,
2.5, and 5.0 nM RNAi AFLMP1. Scale= 100 microns.
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H20 (NC)

1x PBS (NC) RPMI (NC) Unrelated siRNA (NC)

12h

18 h

36 h

-- }
¥

Figure 3. Effect of negatives control on the growth of 4. flavus. Microtiter plates were inoculated with
spores of 4. flavus (200 spores/well) with unrelated siRNA as NC for 16 h at 37 °C incubation in dark. After
adding Calcofluor White (1:20), stained hyphae were visualized by confocal microscope system in Opera®
High Content Screening. Exemplified are fluorescence micrographs at concentrations of 0.65, 1.25, 2.5, and
5.0 nM RNAi1 AFLMP1. NC-siRNA RNAi; NC H,O: Sterile water; 1XxPBS and RPMI. Scale= 100 microns.
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Figure 4. Quantitative representation of the inhibition of 4. flavus by RNAi against AFLMP1. Based on the
images recorded by the Opera® system, the evaluation of the surface coverage of the stained cell walls of A4.
flavus in various time points, including 12, 18 and 36 hours, was performed using ImageJ. The surface of the
visualized hyphae was uniformly calculated according to the parameters particle size (PX?) of 20-c0 and
roundness of 0.0-0.5.
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suppression of fungal growth possible via
silencing of AFLMP1 as compared to
positive controls (I1xPBS, dd H,O and
RPMI) and a negatives control (unrelated
siRNA). The images taken at 36 hours after
the various concentrations of siRNA showed
no inhibitory effect on the germination and
elongation spores of 4. flavus (Figure 4).

The results were indicative of germination
inhibition and mycelial retardation as
demonstrated by probable siRNA specificity
and potency towards AFLMP1. Our data was
verified when compared with NC-siRNA in
different concentrations and buffers with no
siRNA molecules. Negative controls did not
show any inhibitory effect in all
concentrations. The only comparable results
to the negative controls were noted at 0.65
nM of siRNA. In addition to the careful
design of siRNA (i.e., nucleotide content,
sequence length and duplex
thermodynamics) to alleviate off-targets, the
mechanisms that facilitate RNA uptake and
the accessibility of the target site on mRNA,
the other consideration would be the impact
of pest or pathogen RNAi machinery in the
efficacy of siRNA technology (Hajeri and
Singh, 2009; Gatta et al., 2018; Niu et al.,
2021). As AFLMP1 previously
demonstrated to be a good cell surface target
to generate polyclonal (Woo et al., 2003)
and monoclonal antibodies (Ansari et al.,
2021), here, an alternative and attractive
strategy based on a synthesized siRNA was
put forward to target AFLMPI-encoding
transcript. Upon successful interaction of the
siRNA with AFLMP1 and biocontrol of
spore germination and hyphal growth, many
applications including RNA-based vaccine
production and development of resistant
transgenic  plants with capability of
suppressing fungal infiltration can be
envisaged.

Our results were well in agreement with
earlier studies (Nami et al. 2017; Schubert et
al., 2018). Spore germination and growth
retardation was monitored by Opera®
system for all concentrations for a period of
36 hours. The results were indicative of
germination  inhibition and  mycelial
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retardation, demonstrating siRNA specificity
and potency towards AFLMP]1 as confirmed
when compared with NC-siRNA in different
concentrations and buffers with no siRNA
molecules. The only comparable results to
negative control were noted at 0.65 nM of
siRNA.

CONCLUSIONS

Our results confirmed AFLMP1-targeting
siRNA has the potential of reducing growth
of Aspergillus, and AFLMP1 has an
essential role in life cycle of A. flavus;
therefore, it is considered as a candidate
strategy for generation of aflatoxin-free
crops. Further studies and more detailed
characterization are necessary to silence
genes of interest in 4. flavus.
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