Effect of Saline Drinking Water on Egg Shell Quality of Leghorn and Native Hens

J. Pourreza1, N. Nili1 and M.A. Edriss1

ABSTRACT

This experiment was carried out to study the effect of sodium chloride from drinking water and feed intake on the quality of eggs from laying hens. Four hundred and twenty native and white leghorn laying hens ranging from 36 to 43 weeks of age were used. Seven experimental treatments containing different levels of salt supplied by feed and/or drinking water were compared. Increasing salt intake by the addition of NaCl to drinking water or feed intake reduced shell thickness, shell ash and increased the number of damaged eggs. Shell calcium was not affected by added salt, however, the addition of salt to the food reduced shell-breaking strength. Breed differences influenced the traits studied, except for shell percentage and shell calcium. Sodium chloride intake from drinking water was more effective in reducing shell quality than salt from food.

Keywords: Leghorn, Saline drinking water, Feed intake.

INTRODUCTION

The reduction in egg shell quality brought about by adding sodium chloride (NaCl) to the drinking water of laying hens has already been reported \cite{3,4,12,13}. Concentrations of NaCl, ranging from 200 to 2000 mg/l, increased the incidence of egg shell defects when the intake of NaCl from drinking water was low compared with intake from the diet \cite{13,14}. Short term use of saline drinking water, reduced egg shell quality at latter ages. The negative effect of saline drinking water on egg shell quality persisted even after the removal of saline drinking water \cite{2}.

Egg producers in many provinces use underground water as a source of drinking water for both fertile and egg producing flocks. These water resources may contain high concentrations of dissolved salts of which NaCl is a major constituent. This experiment was conducted to determine the effect of the source of NaCl on the incidence of egg shell defects and to evaluated whether any increase in sensitivity to the NaCl content of drinking water could be offset by altering the NaCl content of the diet. In addition, the effect of NaCl intake on different breeds was also evaluated.

MATERIALS AND METHODS

Four hundred and twenty laying hens (native and white Leghorn) ranging from 36 to 43 weeks of age were randomly divided into 42 groups of 10 hens each (210 hens from each breed). The hens from each breed were randomly selected from a flock of 1000

1Department of Animal Science, College of Agriculture, University of Technology, Isfahan, Islamic Republic of Iran.
hens before the commencement of the experiment. The egg production rate of each experimental group was nearly identical. Before the experiment, all hens were maintained on a practical laying hen diet, containing 2900 kcal/kg ME, 16% protein, 0.2% salt and 3.5% calcium [11]. Analysis of the drinking water [1] showed that it contained 12 mg Na and 17 mg Cl per liter, respectively. The purity of NaCl used was about 95%.

During the eight weeks of the experiment, hens were given free access to food and water. The photoperiod was 14 h light/d. A basal diet was made (Table 1). In order to obtain the seven experimental diets, various amounts of NaCl were added to either the basal diet (1 or 2 g NaCl/kg of diet) or the drinking water (0.5, 1 or 2 g NaCl/kg of water; Table 2). Each group of hens was treated as a replicate. Food intake, egg production, number of damaged shells and shell quality measurements were recorded for each group. Eggs were collected and inspected manually for cracked, broken, deformed and soft-shelled eggs. Egg weight of three days accumulation of normal eggs for each group was determined per week. Water intake was determined twice a week.

Four weeks before the termination of the experiment, the collected eggs were transferred to the laboratory for shell quality determination. Shell thickness and shell percentage (as egg weight) were determined as described by pourreza et al. [9]. Shell ash percentage and calcium were measured using the method of AOAC [1]. An Instron testing instrument Model 1011 (Instron Corporation, Canton, MA 02021) was used to determine egg-breaking strength. Each individual egg was placed on its side on a flat surface and force was applied by a fleet cylindrical probe (base diameter of 3 cm) attached to a 5-50 kg load cell. The crosshead speed was 200 mm/min and egg-breaking strength was recorded in kilograms through a detector (5).

Table 1. Composition of basal diet

<table>
<thead>
<tr>
<th>Ingredients (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow corn</td>
<td>60.75</td>
</tr>
<tr>
<td>Barley</td>
<td>10.00</td>
</tr>
<tr>
<td>Soybean meal (44%)</td>
<td>17.00</td>
</tr>
<tr>
<td>Fish meal (65%)</td>
<td>3.00</td>
</tr>
<tr>
<td>Oystershell</td>
<td>7.50</td>
</tr>
<tr>
<td>Dical-phosphate</td>
<td>1.20</td>
</tr>
<tr>
<td>Vit & min. suppl.</td>
<td>0.50</td>
</tr>
<tr>
<td>DL-methionine</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Calculated analysis

- ME kcal/kg: 28.75
- Protein %: 15.8
- Calcium %: 3.4
- Avail. P %: 0.44
- Lysine %: 0.76
- Methionine %: 0.35
- Cl %: 0.065
- Na %: 0.047

*a Adopted from Scott *et al.* [11]

Table 2. Experimental treatments

<table>
<thead>
<tr>
<th>Diet No.</th>
<th>Added NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feed mg/kg</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2000</td>
</tr>
</tbody>
</table>

Analysis of Data

The least-squares method as outlined by Harvey [7] was used to analyze the data. For the percentage of shell, shell thickness, calcium content of the shell, percentage of shell ash,
egg-breaking strength and percentage of broken eggs, the constants were fitted for breed, treatment and the interaction between breed and treatment.

Pair-wise tests of significance for difference between means were completed using Duncan’s multiple range test [6] as modified by Kramer [8]. Standard errors of different means were calculated by the appropriate inverse elements of the variance-covariance matrix.

In order to estimate the adjusted regression coefficients of recorded traits on different levels and sources of salt intake, the regression of different measurements on a variety of levels and sources of salt intake was added to the analysis model referred to above.

Gross correlation coefficients were calculated without making any adjustment to the data. Also, the percentage of variation accounted for by regression was estimated by dividing the sum of squares accounted for regression coefficient by the total sum of squares.

RESULTS

Analysis of variance and least-squares means and standard errors for the considered traits are shown in Tables 3 and 4. The incidence of damaged eggs was significantly (P<0.01) affected by breed and treatment.

Increasing the concentration of NaCl in the drinking water (diet 6) increased the percentage of damaged eggs. Shell thickness, shell ash and shell-breaking strength were also significantly (P<0.01) affected by breed and treatment. Interactions between breeds and treatments were significant (P<0.01) and followed the same manner for shell ash, shell-breaking strength and damaged eggs.

Shell calcium was not affected by breed or treatment (Table 4). Shell thickness and shell ash were decreased as the NaCl content of the water was increased. Increasing NaCl intake either from food or water decreased shell-breaking strength. This reduction was more pronounced with drinking water than food (Table 4). It is of interest to note that, as the concentration of NaCl in the water increases, egg shell quality decreases as well (Table 4).

The relationship between the different sources of added salt with the considered traits is shown in Table 5. The correlation coefficients between NaCl from water and food with shell thickness, shell calcium, shell ash and damaged eggs were significant. Only the correlation coefficient between shell-breaking strength and dietary salt was significant (P<0.01). The coefficient for R square and V are presented in Table 3. The

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f.</th>
<th>Shell thickness</th>
<th>Shell calcium</th>
<th>Shell ash</th>
<th>Shell breaking strength</th>
<th>Broken eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>kg</td>
<td>%</td>
</tr>
<tr>
<td>Breed (B)</td>
<td>1</td>
<td>0.173</td>
<td>1.20</td>
<td>1194.6**</td>
<td>16268**</td>
<td>22.73**</td>
</tr>
<tr>
<td>Treatment (T)</td>
<td>6</td>
<td>0.114</td>
<td>5.295</td>
<td>19.6**</td>
<td>11779**</td>
<td>0.88**</td>
</tr>
<tr>
<td>B*T</td>
<td>6</td>
<td>0.143</td>
<td>2.92</td>
<td>20.2**</td>
<td>3770*</td>
<td>0.88**</td>
</tr>
<tr>
<td>Random error</td>
<td>28</td>
<td>0.84</td>
<td>3.79</td>
<td>1.7</td>
<td>1362</td>
<td>0.11</td>
</tr>
<tr>
<td>CV</td>
<td>3.04</td>
<td>0.49</td>
<td>5.87</td>
<td>2.28</td>
<td>4.63</td>
<td>45.00</td>
</tr>
</tbody>
</table>

Table 3. Analysis of variance for the considered traits (mean squares)

Significant at P<0.05.
Significant at P<0.01.
Table 4. Least-squares means and standard errors by breed and treatment and test of significance for difference between means

<table>
<thead>
<tr>
<th>Main factors</th>
<th>Subclass</th>
<th>Salt intake</th>
<th>Nao of obs.</th>
<th>Shell thickness</th>
<th>Shell calcium</th>
<th>Shell ash</th>
<th>Breaking strength</th>
<th>Broken eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H₂O</td>
<td>Food</td>
<td>Total</td>
<td>%</td>
<td>mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Overall mean</td>
<td></td>
<td>254</td>
<td>198</td>
<td>357</td>
<td>42^a</td>
<td>9.53</td>
<td>0.388</td>
<td>33.2</td>
</tr>
<tr>
<td>Breed</td>
<td>Local</td>
<td>213</td>
<td>167</td>
<td>303</td>
<td>21</td>
<td>947^a</td>
<td>0.403a</td>
<td>33.4 a</td>
</tr>
<tr>
<td></td>
<td>Exotic</td>
<td>292</td>
<td>226</td>
<td>411</td>
<td>21</td>
<td>960 a</td>
<td>0.372 b</td>
<td>33.0 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>211</td>
<td>6</td>
<td>9.53 ab</td>
<td>0.413 c</td>
<td>34.5 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>107</td>
<td>115</td>
<td>222</td>
<td>6</td>
<td>9.78 b</td>
<td>0.402 be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>118</td>
<td>212</td>
<td>310</td>
<td>6</td>
<td>9.45 ab</td>
<td>0.387 abc</td>
</tr>
<tr>
<td>Treatment</td>
<td>4</td>
<td>208</td>
<td>0</td>
<td>208</td>
<td>6</td>
<td>9.57 ab</td>
<td>0.397 abc</td>
<td>34.0 a</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>213</td>
<td>222</td>
<td>435</td>
<td>6</td>
<td>9.57 ab</td>
<td>0.387 abc</td>
<td>32.2 a</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>442</td>
<td>0</td>
<td>442</td>
<td>6</td>
<td>9.48 ab</td>
<td>0.367 ab</td>
<td>32.5 a</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>444</td>
<td>227</td>
<td>671</td>
<td>6</td>
<td>9.33 a</td>
<td>0.361 a</td>
<td>32.3 a</td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td>0.12</td>
<td>0.012</td>
<td>0.80</td>
<td>0.53</td>
<td>15.1</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>

Each observation is a mean of ten measurements. All means within a particular sub-class differ significantly (P<0.05) except for those followed by the same letter.

Table 5. Relationship between different sources of added salt with considered traits

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Shell thickness</th>
<th>Shell calcium</th>
<th>Shell ash</th>
<th>Breaking strength</th>
<th>Broken eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added salt through the water</td>
<td>r = -0.183</td>
<td>b^ = -0.378±0.31</td>
<td>v% = 3.54</td>
<td>60.52±55.8</td>
<td>1.54±43**</td>
</tr>
<tr>
<td>Added salt through the feed</td>
<td>r = -0.037</td>
<td>b^ = -0.350±0.53</td>
<td>v% = 1.09</td>
<td>0.415±0.98</td>
<td>0.223</td>
</tr>
</tbody>
</table>

r = Gross correlation coefficients; b= Adjusted regression coefficient; v% = Percent of variation accounted for by regression.

* Significant at P<0.05. ** Significant at P<0.01.
highest R square was related to shell ash (0.97) and the lowest to shell calcium (0.32), which indicated that sources of variation other than those considered were effective on the calcium content of the shell.

DISCUSSION

The results obtained in this experiment indicate that increasing the amount of NaCl in the drinking water of laying hens reduces shell quality. Shell thickness decreased as NaCl intake increased. This reduction was more pronounced with drinking water than with food (Table 4). These findings confirm those obtained by others [11,14]. Reducing or eliminating dietary NaCl did not improve shell thickness which is in agreement with the finding of Yoselewitz and Balnave [14]. Although the total NaCl intake from diets 1, 2 and 4 were numerically similar, the shell thickness decreased severely when NaCl from drinking water was compared with that from the diets (Table 4). This finding shows that decreased shell thickness was not completely associated with decreased intakes of calcium or with increased egg output, because the feed intake and egg production were nearly similar in these treatments [10].

The correlation coefficients between shell-breaking strength and NaCl intake from the diet were significant; they showed that increasing NaCl intake from the diet decreases shell strength. Although these findings confirm those found by others [12, 13,15], the difference in the means of intake (from food or water) is not in agreement with the findings of Yoselewitz and Balnave [13], they found that an increase in NaCl intake from drinking water rather than food decreased shell-breaking strength.

As NaCl intake increased, the percentage of the shell ash decreased. When shell calcium is compared with shell ash, it could be assumed that increasing NaCl intake may not only have a direct effect on the calcium content of the shell, but may also affect all components of shell structure.

Greater shell thickness and higher shell ash, as well as a lower number of damaged eggs found in native hens, may be related to lower egg weight and lower egg production as compared to the Leghorn breed in which the last two factors are relatively higher. In spite of greater shell thickness and higher shell ash associated with native hens as mentioned above, it is of interest to note that shell-breaking strength was lower in these breeds than in Leghorns. This could be related to the better shell structure of eggs from the Leghorn breed.

In conclusion, the results obtained under the conditions of this experiment show that there are breed differences in the measured criteria. These differences could be attributed to either afforded degree of sensitivity to NaCl intake or due to a genetic based factor, increasing NaCl intake reduced egg shell quality as measured by different parameters and reducing or eliminating the means of NaCl intake (by food) did not improve egg shell quality. Water analysis as well as breed identification are essential before the establishment of any laying or breeding flocks.

ACKNOWLEDGMENTS

The authors wish to express their thanks to Dr. M. Shahedi for his technical help and advice concerning the measurement of shell-breaking strength. The financial support of the Isfahan University of Technology is greatly acknowledged.

REFERENCES

2. Balnave, D. and Zhang, D. 1998. Adverse Response in Egg Shell Quality in Late-Laying Resulting from Short Term Use of
Saline Drinking Water in Early or Mid Laying
3. Balnave, D., Zhang, D. and Moreng, R.E.
1991. Use of Ascorbic Acid to Prevent the
Decline in Egg Shell Quality Observed With
Relation Between Sodium Chloride Concentra
tion in Drinking Water and Egg Shell
5. Frost, T. J. and Roland, D.A. 1990. Influence
Of Vitamin D3, 1-hydroxyvitamin D3, and 1,25
Dihydruxvyitamin D3, on Egg Shell Quality,
Tibia Strength and Various Production
Parameters in Commercial Laying Bens. *Poult.
6. Duncan, D.B. 1955. Multiple Range and
7. Harvey, W.R. Least-squares Analysis of Data
With Unequal Subclass Frequencies. USDA.
Agricultural Research Service, Originally
published as ARS 20-8, 1960. Reprinted With
Corrections of Minor Errors of ARS H-4.
Range Tests to Group Correlated Adjusted
1983. Egg Components of the Native Fars
Chickens in Cages and on Deep-litter. *Iran
Salt from Feed and Water on Performance of
25-33.
11. Scott, M.L., Nesheim, M.C. and Young, R.J.
12. Yoselewitz, I., Zhang, D. and Balnave, D.
1990. The Effect on Egg Shell Quality of
Supplementing Saline Drinking Water with
Sodium or Ammonium Bicarbonate. *Aust. J.
in Egg Shell Quality to Sodium Chloride
Supplementation of the Diet and / or Drinking
Response in Egg Shell Quality to Saline
PP. 102.
15. Zhang, D., Moreng, R.E. and Balnave, D.,
1991. Reproductive Performance of Artificially
Inseminated Hens Receiving Saline Drinking