Evaluation of Physiological Indices for Improving Water Deficit Tolerance in Spring Safflower

B. Pasban Eslam1*

ABSTRACT

In order to evaluate the physiological indices in relation to the screening of spring safflower genotypes for drought tolerance and productivity, seed and oil yields and yield components were measured for five genotypes including Local Arak, Local Esfahan, Sina, KH23 – 57 and Goldasht. The study was conducted in a loam soil in East Azarbaijan, Iran, during three successive years (2005-2007). Water treatments consisted of non-stressed and water deficit imposed from flowering (80% flowering) to maturity. Several physiological indices including relative water content (RWC), stomatal conductance (Ks), leaf temperature, osmotic adjustment, and specific leaf weight (SLW) were measured.

Considering the significant decrease of seeds in capitulum, 1000 seeds weight, harvest index (HI), seed and oil yields due to water deficit, it seems that drought decreased seed and oil yields mainly via declining these components of yield. Since RWC and Ks decreased and leaf temperature, osmotic adjustment, and SLW were increased significantly by water deficit, therefore these indices could reflect the stress effects during seed filling period. Among RWC, Ks, leaf temperature and osmotic adjustment, significant correlations were seen. Also significant positive correlations were found among Ks, RWC and SLW with seed and oil yield. Screening spring safflower genotypes by the abovementioned characteristics may lead to economically acceptable yields under water deficit condition. Among the genotypes, Goldasht, with 1,412 and 358 kg ha⁻¹ seed and oil yields, respectively, had the lowest yield, associated with lower values of RWC, Ks and osmotic adjustment. Other genotypes had similar seed and oil yields, while Local Arak had the higher amounts of seed and oil yields, associated with higher values of RWC, Ks and osmotic adjustment. It is concluded that Local Esfahan, Sina, KH23-57, and especially Local Arak genotypes, can be used for cultivation in Khero Shahr and areas with similar climate (cold and semi-arid in Koppen climate classification) under normal and late season drought conditions.

Keywords: Physiological indices, Safflower, Seed and oil yields, Water deficit.

INTRODUCTION

Among the different environmental stresses, drought is the constraint that induces a highly negative effect on crop production. When subjected to this constraint, plants manifest a wide range of behaviors varying from great sensitivity to high tolerance.

Safflower, a strongly tap-rooted annual plant from Compositae family, is native to the Middle East. It is resistant to saline condition (Bassil and Kaffka, 2002) and to drought stress (Bassiri et al., 1977). Safflower is usually planted in California in the spring to prevent excessive vegetative growth leading to poor seed yield (Kaffka and Kearney, 1998). Total biomass and plant height of safflower genotypes grown in salinized soil (7.2 dS m⁻¹) and drought conditions were proportional to their water use over the range of 400-580 mm (Bassil and Kaffka, 2002).

1 Research Center for Agriculture and Natural Resources of East Azarbaijan, Tabriz, Islamic Republic of Iran.
* Corresponding author, e-mail: b_pasbaneslam@yahoo.com
The number of capitula per plant and the number of filled seeds per plant were linearly correlated with the number of capitula (Steer and Harrigan, 1986). Saini and Westgate (2000) clearly pointed out that, even though all the reproductive sub-phases are sensible to water deficit in safflower, a water stress during the earliest reproductive stages causes seed and/or flower numbers reduction. Mozaffari and Asadi (2006) studied safflower mutant genotypes under normal and drought conditions and reported positive correlation among capitulum diameter, number of seeds in capitulum, and oil content. Path analysis suggested that in irrigated and drought conditions, the number of seeds in capitulum and 100-seeds weight had the greatest positive direct effects on seed yield. Additional positive impacts were due to the stem diameter, under irrigation, and, under drought, the number of days to 50% flowering and capitulum diameter. Capitulum weight had the greatest negative direct effect on seed yield under water stress. Effatdoust et al. (2004) concluded that, in non-stressed condition, the number of capitula per plant as well as the number of filled and hollow seeds per capitulum is suitable for selection of drought tolerant spring safflower genotypes. For the same purpose and under stress condition, 1000-seeds weight and the number of seeds per capitulum are appropriate. Lovelli et al. (2007) state that in safflower, HI did not significantly change in five irrigation regimes with a restoration of 100, 75, 50, 25 and 0% of the maximum crop evapotranspiration, but, seed yield declined sharply in severely drought stressed plants. Yau (2006) indicated that later sowing of spring safflower in semi-arid and high-elevation Mediterranean environment resulted in lower seed yield as later flowering does not allow an escape from the terminal drought and heat. Kar et al. (2007) found the highest water use efficiency was achieved by safflower with the mean values being 3.04 and 1.23 kg ha\(^{-1}\) mm\(^{-1}\) with three and one supplemental irrigations, respectively. Also, supplemental irrigation had a significant effect on grain yield so that with one irrigation only 392 kg ha\(^{-1}\) grain yield was obtained and yield was enhanced by 48% when two irrigations were applied over one irrigation.

Dordas and Sioulas (2008) reported significant positive correlation between stomatal conductance and assimilation rate, seed yield and oil yield in safflower genotypes that were grown under rainfed condition of Greece. Several physiological characteristics which may contribute to continued growth under water deficit stress have been identified. Osmotic adjustment is considered to be an adaptive characteristic by which an increase in the solute content of cells can lead to maintenance of turgor and turgor related processes at low water potentials (Kumar et al., 1984; Singh et al., 1990; Kumar and Elson, 1992; Kumar and Singh, 1998). Kumar et al. (1984), Singh et al. (1985) and Kumar and Singh (1998) have reported close associations between osmotic adjustment and both stomatal conductance and canopy temperature in oilseed Brassica species. Singh et al. (1985) stated that transpirational cooling (air temperature minus canopy temperature) could effectively be used as a technique to screen Brassica genotypes for drought tolerance under receding soil moisture condition. Kumar and Singh (1998) showed significant correlation between seed yield and osmotic adjustment, transpirational cooling, and stomatal conductance in oilseed Brassica species. Lehman et al. (1993) suggested that, in bentgrass (Agrostis gigantean L.), relative water content (RWC) would better predict maintained growth under increasing water deficit than leaf water potential.

The objectives of this study were to evaluate the physiological indices in relation to the screening of spring safflower genotypes for water deficit tolerance and to study seed yield and its components in Carthamus tinctorius L. genotypes under drought stress occurring during seed filling stage.
MATERIALS AND METHODS

The experiments were carried out in Agriculture and Natural Resources Research Center of East Azarbaijan, Iran (40° 2' E, 37° 58' N), during three growing seasons (2005-2007). The prevailing weather characteristics during the study are summarized in Table 1. The experiments were conducted as a factorial consisting of two factors based on a randomized complete block design with three replications. Five spring safflower genotypes including Local Arak, Local Esfahan, Sina, KH23-57 and Goldasht were evaluated under non-stressed and water deficit conditions in a loam soil. Water stress was applied on the basis of MAD (Mean Allowable Depletion) method (Stegman, 1983). Plants were irrigated at MAD= 35% and MAD= 70% available soil water depletion in non-stressed and stressed plots, respectively (Table 2). The stress treatment received one irrigation of 25 mm during late flowering (80% flowering) to maturity. In the same period, the non-stressed plots received 75 mm of water in three applications. To avoid precipitation, the stressed plots were covered by polyethylene shelters. There was only one precipitation event for 3 hours in the first year. The plot size was 5 m × 2.1 m. Seeds were sown at the bottom of furrows in a 30×60 cm system (one pair of rows in each furrow with 30 cm spacing, and 60 cm spacing between the adjacent rows) on 29 March in all years. Plants were thinned to a spacing of 10 cm within rows, four weeks after sowing. During the growing season, crop management practices, such as pest and weed control and plant nutrition, were carried out as needed. Based on the results of soil testing, nitrogen, phosphorus and potassium fertilizers were applied at the rates of 300, 120 and 80 kg ha⁻¹, respectively. Aphid was controlled by Primicarb application during seed filling stage.

The youngest fully-expanded leaves were used for various measurements including leaf temperature, relative water content, stomatal conductance, osmotic adjustment, and specific leaf weight, starting late flowering until leaf senescence. These measurements were done on 10 plants per plot and were repeated four times after the treatments were applied. The average of those measurements were used for data analysis. A hand-held infrared thermometer (Class 2, Testo, Germany) was used to measure leaf temperature (Ray et al., 1998). Relative water content (RWC) was obtained by floating the leaf discs (3 discs from each leaf with 20 mm diameter) on distilled water for 4 hours at 5°C under dim light. The turgid weight (TW) was then determined after floating, and the dry weight (DW) after the samples were dried for 24 hours at 80°C. Later, the fresh weight (FW), TW and DW were used to calculate RWC as $RWC = \frac{FW - DW}{TW - DW}$ (Jensen et al., 1996; Lazcano-Ferrat and Lovatt, 1999). Stomatal conductance ($K_l$) was determined with an AP4 prometer (Delta-T Devices, UK). Because both RWC and osmotic potential, $\psi_s$, are interdependent variables, the regression was fitted with RWC as dependent variable using the following equation:

$$\ln RWC = a - b \cdot \ln \psi_s$$

Where $a$ and $b$ are intercept and slope of the equation, respectively. Reciprocal of the slope (1/b) is a measure of osmoregulation (Singh et al., 1985; Kumar and Singh, 1998). $\psi_s$ was determined by the refractometry conductivity method (Shimshi and Livne, 1967; Bar-Tsur and Rudich, 1987). To determine specific leaf weight (SLW), the area of the leaves was measured and, then, the leaves were oven dried at 80°C for 48 hours (Wright et al., 1996).

Finally, plant and capitulum height, capitulum diameter, seed yield and its components, and seed oil were measured using samples taken from 10 plants in each plot. Seed yield of each plot was determined by harvesting plants in a 6 m² frame, excluding the edge plants. Seed oil was determined by NMR (nuclear magnetic resonance) method. Statistical evaluations of
### Table 1. Meteorological data for the three growing seasons in Khoroshr Station.

<table>
<thead>
<tr>
<th>Month</th>
<th>Mean minimum air temperature (°C)</th>
<th>Mean maximum air temperature (°C)</th>
<th>Rainfall (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>2.4</td>
<td>5.8</td>
<td>3.2</td>
</tr>
<tr>
<td>April</td>
<td>9.4</td>
<td>9.5</td>
<td>9.8</td>
</tr>
<tr>
<td>May</td>
<td>8.3</td>
<td>16.6</td>
<td>15.1</td>
</tr>
<tr>
<td>June</td>
<td>17.2</td>
<td>19.2</td>
<td>18.3</td>
</tr>
<tr>
<td>July</td>
<td>19.5</td>
<td>19.4</td>
<td>18.0</td>
</tr>
<tr>
<td>August</td>
<td>14.4</td>
<td>15.2</td>
<td>15.8</td>
</tr>
</tbody>
</table>

### Table 2. Characteristic of the soil in the experiment field.

<table>
<thead>
<tr>
<th>Soil depth (cm)</th>
<th>$FC^a$ (%)</th>
<th>$WP^b$ (%)</th>
<th>$AWC^c$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>23.0</td>
<td>22.0</td>
<td>21.0</td>
</tr>
<tr>
<td>30-65</td>
<td>22.0</td>
<td>20.5</td>
<td>21.0</td>
</tr>
<tr>
<td>65-100</td>
<td>15.5</td>
<td>15.0</td>
<td>16.5</td>
</tr>
</tbody>
</table>

$^a$Field capacity; $^b$Wilt point; $^c$Available water capacity.
the data were performed by using MSTAT-C and SPSS software packages.

RESULTS

Yield and Related Characteristics

Drought stress during seed filling stage in the spring safflower genotypes significantly decreased capitulum diameter, number of seeds in capitulum, 1,000 seeds weight, HI, seed and oil yields (Tables 3 and 4). Among genotypes significant differences were observed in plant and capitulum height, capitulum diameter, capitula in plant, number of seeds in capitulum, 1,000 seeds weight (TSW), HI, seed and oil yields and seed oil percentage (Table 3). The Local Esfahan cultivar had the highest value of plant and capitulum height, while Sina and Goldasht cultivars had the lowest. The highest values of capitulum diameter, seeds in capitulum, and TSW belonged to Goldasht, but the lowest amounts of capitula in plant, HI and seed oil belonged to this genotype. Therefore, Goldasht with 1,412 and 358 kg ha⁻¹ seed and oil yields, respectively, produced the lowest yield (Table 5). The other genotypes that had similar seed and oil yields were ranked in the same statistical group. Also, these genotypes had higher amounts of capitula in plant, HI, and seed oil (Table 5) than Goldasht. Among the studied genotypes, Local Arak produced higher amounts of seed, oil, and HI during the three seasons, whereas Goldasht yielded lower (Table 6).

Physiological Indices

Water deficit during seed filling stage significantly decreased RWC and $K_s$, but increased leaf temperature, osmotic adjustment, and SLW (Tables 3 and 4). Significant differences were found among spring safflower genotypes in $RWC$, $K_s$, osmotic adjustment, and $SLW$ (Table 3). The lowest values of $RWC$, $K_s$ and osmotic adjustment belonged to Goldasht, but the highest SLW was recorded for Goldasht (Table 5). Higher values of $RWC$, $K_s$ and osmotic adjustment belonged to Local Arak cultivar (Table 5). Interaction effect between genotype and water stress in osmotic adjustment was significant (Table 3). According to Table 7, the lower values of osmotic adjustment belonged to Sina and Goldasht cultivars. Local Arak and KH$_{23-57}$ indicated the highest osmotic adjustment under drought.

Table 8 shows that the correlation between $K_s$ with SLW, osmotic adjustment, and leaf temperature were significantly negative. Similar correlations were obtained between $RWC$ with osmotic adjustment and leaf temperature, and between $SLW$ with HI. On the hand, the correlation between osmotic adjustment with leaf temperature, and between $K_s$ with $RWC$ and HI, were positive and significant. Seed and oil yields were correlated negatively with SLW and positively with $K_s$, $RWC$, and HI (Table 8). The correlation between seed yield and leaf temperature were significantly negative. Finally, seed yield was positively correlated to seed oil (Table 8).

DISCUSSION

Since water deficit during the seed filling stage decreased seeds in capitulum, TSW, and HI it seems that drought decreased seed and oil yields mainly via decreasing the abovementioned components of yield in spring safflower genotypes. One possible explanation for decreasing seeds in capitulum, TSW, capitulum diameter, and HI could be the limitation of supplying carbohydrates to capitula caused by water stress. Steer and Harrigan (1986) reported that the major components of yield in safflower are the numbers of capitula and filled seeds per plant. According to Saini and Westgate (2000), a water stress during the earlier reproductive stages of safflower causes seed and/or flower number reduction. Mozaffari and Asadi (2006) reported
Table 3. Analysis of variance of the traits measured on spring safflower.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Plant height</th>
<th>Capitalum height</th>
<th>Capitalum diameter</th>
<th>Capitala in plant</th>
<th>Seeds in capitula</th>
<th>1000 seeds weight</th>
<th>Harvest index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year (Y)</td>
<td>2</td>
<td>352.3**</td>
<td>36.5**</td>
<td>31.87**</td>
<td>138.42**</td>
<td>42.2</td>
<td>18.2**</td>
<td>0.020**</td>
</tr>
<tr>
<td>Replication (R)</td>
<td>6</td>
<td>238.5**</td>
<td>271.9**</td>
<td>0.85**</td>
<td>57.57**</td>
<td>15.3</td>
<td>19.8**</td>
<td>0.002</td>
</tr>
<tr>
<td>Stress (S)</td>
<td>1</td>
<td>27.0</td>
<td>14.9</td>
<td>20.74**</td>
<td>6.06**</td>
<td>0.08**</td>
<td>0.009**</td>
<td></td>
</tr>
<tr>
<td>Y×S</td>
<td>2</td>
<td>63.7</td>
<td>65.0</td>
<td>1.85</td>
<td>33.90</td>
<td>18.4</td>
<td>12.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Genotype (G)</td>
<td>4</td>
<td>1478.7**</td>
<td>1023.7**</td>
<td>132.38**</td>
<td>221.63**</td>
<td>368.9**</td>
<td>645.3**</td>
<td>0.016**</td>
</tr>
<tr>
<td>Y×G</td>
<td>8</td>
<td>73.7</td>
<td>55.5</td>
<td>1.71</td>
<td>28.97</td>
<td>57.3</td>
<td>9.1</td>
<td>0.006</td>
</tr>
<tr>
<td>S×G</td>
<td>4</td>
<td>40.3</td>
<td>35.4</td>
<td>2.36</td>
<td>2.64</td>
<td>40.4</td>
<td>10.0</td>
<td>0.003</td>
</tr>
<tr>
<td>Y×S×G</td>
<td>8</td>
<td>27.5</td>
<td>9.8</td>
<td>2.37</td>
<td>23.48</td>
<td>18.6</td>
<td>1.6</td>
<td>0.001</td>
</tr>
<tr>
<td>Error</td>
<td>54</td>
<td>42.0</td>
<td>38.3</td>
<td>1.84</td>
<td>13.90</td>
<td>29.0</td>
<td>4.7</td>
<td>0.001</td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
<td>9.9</td>
<td>12.1</td>
<td>5.1</td>
<td>26.4</td>
<td>12.3</td>
<td>6.1</td>
<td>13.05</td>
</tr>
</tbody>
</table>

*, ** Significant at P<0.05 and P<0.01, respectively.

Table 3 continued

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Seed yield</th>
<th>Seed oil</th>
<th>Seed oil yield</th>
<th>Leaf temperature</th>
<th>RWC*</th>
<th>Ks*</th>
<th>Osmotic adjustment</th>
<th>SLW*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year (Y)</td>
<td>2</td>
<td>2713299**</td>
<td>26.87**</td>
<td>226858**</td>
<td>23.59**</td>
<td>0.001</td>
<td>0.002*</td>
<td>0.00;</td>
<td>3.41</td>
</tr>
<tr>
<td>Replication (R)</td>
<td>6</td>
<td>1142821**</td>
<td>7.34</td>
<td>134956**</td>
<td>57.04**</td>
<td>0.001</td>
<td>0.001</td>
<td>0.07;</td>
<td>6.82</td>
</tr>
<tr>
<td>Stress (S)</td>
<td>1</td>
<td>3305866**</td>
<td>0.07</td>
<td>277553**</td>
<td>1652.94**</td>
<td>0.451</td>
<td>0.769**</td>
<td>79.90;</td>
<td>26.68</td>
</tr>
<tr>
<td>Y×S</td>
<td>2</td>
<td>546169**</td>
<td>4.73</td>
<td>36517**</td>
<td>87.22**</td>
<td>0.001</td>
<td>0.001</td>
<td>0.036;</td>
<td>0.08</td>
</tr>
<tr>
<td>Genotype (G)</td>
<td>4</td>
<td>1963273**</td>
<td>127.17**</td>
<td>308141**</td>
<td>11.56</td>
<td>0.007**</td>
<td>0.042**</td>
<td>0.23;</td>
<td>172.26**</td>
</tr>
<tr>
<td>Y×G</td>
<td>8</td>
<td>471148**</td>
<td>25.66**</td>
<td>60566**</td>
<td>6.07</td>
<td>0.002</td>
<td>0.001</td>
<td>0.045;</td>
<td>2.24</td>
</tr>
<tr>
<td>S×G</td>
<td>4</td>
<td>357430</td>
<td>2.37</td>
<td>22892</td>
<td>6.15</td>
<td>0.002</td>
<td>0.001</td>
<td>0.025;</td>
<td>1.76</td>
</tr>
<tr>
<td>Y×S×G</td>
<td>8</td>
<td>131979</td>
<td>3.35</td>
<td>23227</td>
<td>12.91</td>
<td>0.001</td>
<td>0.001</td>
<td>0.012;</td>
<td>1.91</td>
</tr>
<tr>
<td>Error</td>
<td>54</td>
<td>260991</td>
<td>5.32</td>
<td>27400</td>
<td>11.69</td>
<td>0.002</td>
<td>0.001</td>
<td>0.025;</td>
<td>3.96</td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
<td>25.9</td>
<td>8.1</td>
<td>28.6</td>
<td>17.8</td>
<td>5.6</td>
<td>7.7</td>
<td>7.1</td>
<td>3.8</td>
</tr>
</tbody>
</table>
### Table 4. Mean of the traits under non-stressed and stressed conditions.

<table>
<thead>
<tr>
<th>Stress levels</th>
<th>Capitulum diameter (mm)</th>
<th>Seeds in capitulum</th>
<th>1000 seeds weight (g)</th>
<th>Harvest index</th>
<th>Seed yield (kg ha⁻¹)</th>
<th>Seed oil yield (kg ha⁻¹)</th>
<th>Leaf temperature (°C)</th>
<th>RWC (^a)</th>
<th>(K_\ell^0) (cm s⁻¹)</th>
<th>Osmotic adjustment</th>
<th>SLW (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-stressed</td>
<td>27.3</td>
<td>48.0</td>
<td>36.6</td>
<td>0.27</td>
<td>2164</td>
<td>635</td>
<td>14.9</td>
<td>0.76</td>
<td>0.41</td>
<td>1.31</td>
<td>52.1</td>
</tr>
<tr>
<td>Stressed</td>
<td>26.4</td>
<td>39.6</td>
<td>34.7</td>
<td>0.25</td>
<td>1781</td>
<td>524</td>
<td>23.4</td>
<td>0.62</td>
<td>0.23</td>
<td>3.20</td>
<td>53.2</td>
</tr>
</tbody>
</table>

\(^a\) Relative water content; \(^b\) Stomatal conductance; \(^c\) Specific leaf weight.

### Table 5. Mean of the traits measured on spring safflower.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Plant height (cm)</th>
<th>Capitulum height (cm)</th>
<th>Capitulum diameter (mm)</th>
<th>Capitula in plant</th>
<th>Seeds in capitulum</th>
<th>1000 seeds weight (g)</th>
<th>Harvest index</th>
<th>Seed yield (kg ha⁻¹)</th>
<th>Seed oil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Arak</td>
<td>69.1 b</td>
<td>56.6 ab</td>
<td>27.1 b</td>
<td>14.0 b</td>
<td>45.7 a</td>
<td>34.9 b</td>
<td>0.29 a</td>
<td>2284 (^t)</td>
<td>31.8 a</td>
</tr>
<tr>
<td>Local Esfahan</td>
<td>76.7 a</td>
<td>59.5 a</td>
<td>25.3 c</td>
<td>16.4 ab</td>
<td>48.4 a</td>
<td>28.5 c</td>
<td>0.25 b</td>
<td>2092 (^t)</td>
<td>29.2 bc</td>
</tr>
<tr>
<td>Sina</td>
<td>58.8 c</td>
<td>43.9 c</td>
<td>24.0 d</td>
<td>17.8 a</td>
<td>36.2 b</td>
<td>34.6 b</td>
<td>0.28 a</td>
<td>2072 (^t)</td>
<td>28.9 c</td>
</tr>
<tr>
<td>KH15357</td>
<td>66.7 b</td>
<td>52.3 b</td>
<td>26.8 b</td>
<td>13.7 b</td>
<td>44.1 a</td>
<td>35.2 b</td>
<td>0.27 ab</td>
<td>2000 (^t)</td>
<td>31.2 ab</td>
</tr>
<tr>
<td>Goldashit</td>
<td>53.4 c</td>
<td>42.5 c</td>
<td>31.2 a</td>
<td>8.6 c</td>
<td>45.1 a</td>
<td>45.1 a</td>
<td>0.22 c</td>
<td>1412 b</td>
<td>24.5 d</td>
</tr>
<tr>
<td>LSD (p=0.01)</td>
<td>5.77</td>
<td>5.51</td>
<td>1.21</td>
<td>3.32</td>
<td>4.83</td>
<td>1.93</td>
<td>0.0281</td>
<td>454.7</td>
<td>2.09</td>
</tr>
</tbody>
</table>

Means for each variable followed by the same letter are not significantly different.

### Table 5 continued

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Seed oil yield (kg ha⁻¹)</th>
<th>RWC (^a)</th>
<th>(K_\ell^0) (cm s⁻¹)</th>
<th>Osmotic adjustment</th>
<th>SLW (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Arak</td>
<td>726 a</td>
<td>0.72 a</td>
<td>0.37 a</td>
<td>2.37 a</td>
<td>49.7 d</td>
</tr>
<tr>
<td>Local Esfahan</td>
<td>616 a</td>
<td>0.70 ab</td>
<td>0.36 a</td>
<td>2.28 a</td>
<td>52.9 b</td>
</tr>
<tr>
<td>Sina</td>
<td>602 a</td>
<td>0.68 ab</td>
<td>0.33 b</td>
<td>2.23 a</td>
<td>50.9 cd</td>
</tr>
<tr>
<td>KH15357</td>
<td>618 a</td>
<td>0.70 ab</td>
<td>0.33 b</td>
<td>2.35 a</td>
<td>52.0 bc</td>
</tr>
<tr>
<td>Goldashit</td>
<td>358 b</td>
<td>0.67 b</td>
<td>0.24</td>
<td>2.07 b</td>
<td>57.8 a</td>
</tr>
<tr>
<td>LSD (p=0.01)</td>
<td>147.3</td>
<td>0.0398</td>
<td>0.0281</td>
<td>0.1407</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Means for each variable followed by the same letter are not significantly different.

\(^a\) Relative water content; \(^b\) Stomatal conductance; \(^c\) Specific leaf weight.
positive correlation among capitulum diameter, number of seeds per capitulum and oil content in safflower genotypes under drought. Also, Lovelli et al. (2007) reported a sharp decline in seed yield for severely drought stressed safflower plants. Kar et al. (2007) observed that, under water deficit condition, supplemental irrigation during reproductive phases, had a significant effect on increasing seed yield. Among the studied genotypes, significant
differences were seen in seed and oil yields and their components, and plant capitulum height and diameter. Omidi Tabrizi (2006) evaluated safflower genotypes in three different environmental conditions in Iran and found significant differences among the genotypes in terms of seed and oil yields. Spring safflower genotypes with higher plant and capitulum heights and shorter growing period are suitable mechanized harvesting in Iran. In the present study, Local Esfahan had the highest plant and capitulum height, while Sina and Goldasht genotypes were shorter. The largest capitulum diameter belonged to Goldasht, which also had the highest TSW. However, this genotype had the lowest number of capitula per plant, HI, and seed oil content. In fact, Goldasht seed and oil yields were, respectively, 1,412 and 358 kg ha⁻¹, the lowest among all of the studied genotypes. Therefore, it seems that Goldasht is not suitable for cultivation in the areas that have a climate similar to the experimental site. The other genotypes had a significantly higher seed and oil yield than Goldasht and were all in one statistical group, although Local Arak had the highest seed oil, HI, and

### Table 6. Mean of the traits measured on spring safflower.

<table>
<thead>
<tr>
<th>Years</th>
<th>Genotypes</th>
<th>Harvest index</th>
<th>Seed oil (%)</th>
<th>Seed oil yield (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Local Arak</td>
<td>0.28 abcd</td>
<td>30.4 abc</td>
<td>565 bc</td>
</tr>
<tr>
<td></td>
<td>Local Esfahan</td>
<td>0.27 bcdef</td>
<td>30.1 bc</td>
<td>659 abc</td>
</tr>
<tr>
<td></td>
<td>Sina</td>
<td>0.24 def</td>
<td>28.0 bc</td>
<td>458 cd</td>
</tr>
<tr>
<td></td>
<td>KH₂₃-₅₇</td>
<td>0.24 def</td>
<td>34.4 a</td>
<td>564 bc</td>
</tr>
<tr>
<td></td>
<td>Goldasht</td>
<td>0.16 g</td>
<td>23.3 d</td>
<td>199 e</td>
</tr>
<tr>
<td>2006</td>
<td>Local Arak</td>
<td>0.32 a</td>
<td>30.9 abc</td>
<td>811 a</td>
</tr>
<tr>
<td></td>
<td>Local Esfahan</td>
<td>0.22 ef</td>
<td>27.4 c</td>
<td>535 bc</td>
</tr>
<tr>
<td></td>
<td>Sina</td>
<td>0.32 ab</td>
<td>30.6 abc</td>
<td>729 ab</td>
</tr>
<tr>
<td></td>
<td>KH₂₃-₅₇</td>
<td>0.30 abc</td>
<td>31.8 ab</td>
<td>670 abc</td>
</tr>
<tr>
<td></td>
<td>Goldasht</td>
<td>0.27 bcdef</td>
<td>27.6 c</td>
<td>567 bc</td>
</tr>
<tr>
<td>2007</td>
<td>Local Arak</td>
<td>0.27 bcdef</td>
<td>31.1 abc</td>
<td>740 ab</td>
</tr>
<tr>
<td></td>
<td>Local Esfahan</td>
<td>0.27 bcdef</td>
<td>30.0 bc</td>
<td>653 abc</td>
</tr>
<tr>
<td></td>
<td>Sina</td>
<td>0.27 abc</td>
<td>28.2 bc</td>
<td>619 abc</td>
</tr>
<tr>
<td></td>
<td>KH₂₃-₅₇</td>
<td>0.30 cdef</td>
<td>27.4 c</td>
<td>619 abc</td>
</tr>
<tr>
<td></td>
<td>Goldasht</td>
<td>0.26 f</td>
<td>22.6 d</td>
<td>307 de</td>
</tr>
<tr>
<td></td>
<td>LSD</td>
<td>0.0487</td>
<td>3.620</td>
<td>191.6</td>
</tr>
</tbody>
</table>

Means for each variable followed by the same letter are not significantly different. 
(LSD at the 5% level for seed oil yield and 1% level for other variables).

### Table 7. Mean of osmotic adjustment measured on spring safflower.

<table>
<thead>
<tr>
<th>Stress levels</th>
<th>Genotypes</th>
<th>Osmotic adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-stressed</td>
<td>Local Arak</td>
<td>1.31 e</td>
</tr>
<tr>
<td></td>
<td>Local Esfahan</td>
<td>1.31 e</td>
</tr>
<tr>
<td></td>
<td>Sina</td>
<td>1.27 f</td>
</tr>
<tr>
<td></td>
<td>KH₂₃-₅₇</td>
<td>1.34 e</td>
</tr>
<tr>
<td></td>
<td>Goldasht</td>
<td>1.33 e</td>
</tr>
<tr>
<td>stressed</td>
<td>Local Arak</td>
<td>3.39 a</td>
</tr>
<tr>
<td></td>
<td>Local Esfahan</td>
<td>3.24 b</td>
</tr>
<tr>
<td></td>
<td>Sina</td>
<td>3.19 c</td>
</tr>
<tr>
<td></td>
<td>KH₂₃-₅₇</td>
<td>3.36 a</td>
</tr>
<tr>
<td></td>
<td>Goldasht</td>
<td>2.81 d</td>
</tr>
<tr>
<td>LSD (P= 0.01)</td>
<td></td>
<td>0.0398</td>
</tr>
</tbody>
</table>

Means for each variable followed by the same letter are not significantly different.
Table 8. Simple correlation coefficients between the traits measured on spring safflower.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Osmotic adjustment</th>
<th>KSDo</th>
<th>RWC&lt;sup&gt;b&lt;/sup&gt;</th>
<th>Leaf temperature</th>
<th>Harvest index</th>
<th>Seed yield</th>
<th>Seed oil</th>
<th>Seed oil yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLW&lt;sup&gt;e&lt;/sup&gt;</td>
<td>0.11</td>
<td>-0.52&lt;sup&gt;**&lt;/sup&gt;</td>
<td>-0.33</td>
<td>0.06</td>
<td>-0.56&lt;sup&gt;*&lt;/sup&gt;</td>
<td>-0.56&lt;sup&gt;*&lt;/sup&gt;</td>
<td>-0.62&lt;sup&gt;*&lt;/sup&gt;</td>
<td>-0.63&lt;sup&gt;*&lt;/sup&gt;</td>
</tr>
<tr>
<td>Osmotic adjustment</td>
<td>-0.84&lt;sup&gt;**&lt;/sup&gt;</td>
<td>-0.90&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.88&lt;sup&gt;**&lt;/sup&gt;</td>
<td>-0.16</td>
<td>-0.31</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.24</td>
</tr>
<tr>
<td>K&lt;sub&gt;s&lt;/sub&gt;</td>
<td></td>
<td>0.92&lt;sup&gt;**&lt;/sup&gt;</td>
<td>-0.76&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.45&lt;sup&gt;*&lt;/sup&gt;</td>
<td>0.64&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.30</td>
<td>0.30</td>
<td>0.62&lt;sup&gt;**&lt;/sup&gt;</td>
</tr>
<tr>
<td>RWC</td>
<td></td>
<td>-0.85&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.34</td>
<td>0.48&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.19</td>
<td>0.46&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.46&lt;sup&gt;**&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Leaf temperature</td>
<td></td>
<td></td>
<td>-0.24</td>
<td>-0.40&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>-0.30</td>
</tr>
<tr>
<td>Harvest index</td>
<td></td>
<td></td>
<td></td>
<td>0.86&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.51&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.85&lt;sup&gt;**&lt;/sup&gt;</td>
<td>0.85&lt;sup&gt;**&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Seed yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.47&lt;sup&gt;**&lt;/sup&gt;</td>
<td></td>
<td></td>
<td>0.97&lt;sup&gt;**&lt;/sup&gt;</td>
</tr>
<tr>
<td>Seed oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.67&lt;sup&gt;**&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

* ** Significant at $P<0.05$ and $P<0.01$, respectively.

<sup>a</sup> Stomatal conductance; <sup>b</sup> Relative water content; <sup>c</sup> Specific leaf weight.
seed and oil yields in each of the three years of the study. It is concluded that Local Esfahan, Sina, KH23-57, and especially Local Arak genotypes, can be used for cultivation in Khosro Shahr and areas with similar climate (cold and semi-arid according to Koppen climate classification) under normal and late season drought conditions.

Since water deficit decreased RWC and $K_i$ and increased leaf temperature, osmotic adjustment and SLW significantly, it seems that, these indices could reflect the stress effects occurred during seed filling period. Lehman et al. (1993) suggested that, RWC would better predict maintained growth under increasing water deficit than leaf water potential. Kumar and Singh (1998) showed that seed yield had significant correlation with osmotic adjustment, transpirational cooling, and stomatal conductance in oilseed *Brassica* species. Goldasht indicated lower values of RWC, $K_i$ and osmotic adjustment, being associated with lowest seed and oil yields in this genotype. But, the highest SLW belonged to Goldasht, which could be related to its thick leaves. Results of a study revealed that soybean genotypes with greater SLW provided more photosynthetic proteins per unit ground area (Wells et al., 1986). In the present study, Local Arak genotype, with the largest amounts of seed and oil yields, showed higher values of RWC, $K_i$ and osmotic adjustment (under drought). Osmotic adjustment is considered to be an adaptive characteristic by which an increase in the solute content of cells can lead to maintenance of turgor and turgor related processes at low water potentials. Finally, the results of our study suggest that RWC, $K_i$, leaf temperature, and osmotic adjustment indices could be used to screen safflower spring genotypes under normal and late season drought conditions.

Also, we found significant correlations among RWC, $K_i$, leaf temperature, and osmotic adjustment and significantly positive correlations between $K_i$, SLW, and RWC with seed and oil yields. Accordingly, screening spring safflower genotypes by these last characteristics may give rise to higher yields. Furthermore, $HI$ had a significantly positive (0.86 and 0.85 respectively) correlation with seed and oil yields. Thus, $HI$ may be a more important character in selection of spring safflower genotypes under normal and drought conditions. Positive correlations between $K_i$ and assimilation rate, seed yield, and oil yield in safflower genotypes have also been reported by Dordas and Sioulas (2008). Several researchers (Kumar and Singh, 1998; Singh et al., 1985; and Kumar et al., 1984) have reported close associations between osmotic adjustment, stomatal conductance, and canopy temperature in oilseed *Brassica* species.

**CONCLUSIONS**

Drought during seed filling stage decreased seed yield via reducing seeds in capitulum and 1000-seeds weight. Local Arak, Local Esfahan, Sina and KH23-57 genotypes can be used for cultivation in Khosro Shahr and areas with similar climate. Finally, RWC, $K_i$ and SLW indices can be used to screen safflower spring genotypes for cultivation in areas with late season drought. This study demonstrated the need for further assessment of water deficit tolerance mechanisms in safflower with clear drought cycles and measurements at specific stages of crop growth, using a suitable range of genotypes.

**REFERENCES**


25. Wright, P. R., Morgan, J. M. and Jessop, R. S. 1996. Comparative Adaptation of Canola (Brassica napus) and Indian Mustard (B. juncea) To Soil Water Deficit: Plant Water
ارزیابی شاخص‌های فیزیولوژیک برای بهبود تحمیل به کمبوس آب در گل‌برگه پهاره

ب. پاسیان اسلام

چکیده

به منظور ارزیابی شاخص‌های فیزیولوژیک مربوط با گروهی از نژاد‌های گل‌برگه پهاره، برای تحمیل به خشکی و رسی متحمل دهی آنها، عملکرد دانه، رون، اجاع عملکرد و نیز چند شاخص فیزیولوژیک شامل مقدار آب نسبی (RWC)، هندسات روشنایی (Kᵢ) دمای برگ، تنظیم اسمری و وزن ویژه برگ در پنج نژاد بهاره گل‌برگه شامل محلی اصفهان، سینا، بندرعباس و کهگیلویه تحت (SLW) شرایط گیاهداری و کمیاب آب از اواخر گلدهی (80/%) گلدهی) در سه مدت از 1386 تا 1388 (ارژ. 1) اجرا شد. برای بررسی عملکرد تعداد دانه در طبیعی و رون هزار دانه، شاخص برداشت، عملکرد دانه و رون در اثر وقوع تنش کمبوس آب، به طور مستقل از درک می‌رسد. در گل‌برگه بهاره تنش خشکی عموماً از طریق کاهش اسمری عملکرد مذكور، باعث افت عملکرد دانه و رون گردید. نتایج به دست آمده نشان دادند که کمبوس آب باعث کاهش منفی در افزایش عملکرد دانه، تنظیم اسمری و SLW گردید. بنابراین جنین این استباقی می‌گردد که این شاخص‌های قادر به پاسخ دادن اثرات خشکی در طول دوره پر شدن دانه در گل‌برگه بهاره باشد. همچنین شاخص‌هایی مانند RWC منحنی چسبانی و Kᵢ رون، همیگر خشکی عاملی دارد. به همکاری دیگر است. بنابراین به نظر می‌رسد غربال رون به گل‌برگه‌های آبگیر با یک در این شاخص‌ها باعث گروه‌شکن ارقام پر متحمل‌تر گردید. این شاخص‌ها مورد مطالعه، گل‌برگ به کم بتریب 1312 و 1580 کیلوگرم در هکتار عملکرد دانه و رون، کمترین عملکرد دانه را نشان داد. این در حالی بود که مقایسه پایین‌تر از دیده شد. سایر تأثیرات عملکرد گیاهی شاخص‌هایی از نظر آماری نشان دادند. ولی محلی اصفهان هماهنگ با کم بتریب بالاتر Kᵢ و تنظیم اسمری عملکرد دانه و رون بالاتر نیز نشان دادند. در نهایت، جنین استباقی می‌گردد که نژاد گل‌برگه‌های محلی اصفهان، سینا، بندرعباس و کهگیلویه باعث گروه‌کاری کشت در منطقه خشک‌رود و مناطقی با شرایط اقلیمی مشابه (اقلیم سرد و نیمه خشک) بر می‌تابد که به خنثی شدن کم‌بانی پهنه‌های کویی در شرایط

عادي و کم‌بانی آبی اواخر فصل مناسب می‌باشد.