Effects of Nitrogen Application on Soil Nitrification and Denitrification Rates and N$_2$O Emissions in Greenhouse

Y. K. Li1, B. Li1, W. Z. Guo1, and X. P. Wu2

ABSTRACT

Nitrous oxide (N$_2$O) has significant impact on global warming and leads to the depletion of ozone in the stratosphere. Agricultural soil is regarded as a major source of N$_2$O emissions. In recent years, greenhouse grown vegetables have rapidly developed in China. Although excessive fertilizer application in greenhouse vegetable production can result in increased N$_2$O emissions, research data on such emissions from greenhouse vegetables, such as cucumber, remains limited. In this study, four nitrogen (N) fertilizer treatments including 1,200 (N$_{1200}$, traditional N amount), 900 (N$_{900}$), and 600 kg N ha$^{-1}$ (N$_{600}$) and the control (N$_0$) were carried out on cucumber in a greenhouse in the North China Plain. Results showed that N$_2$O emissions mainly occurred in the first five days after topdressing, and accounted for 75.8%-95.2% of total N$_2$O emissions produced in the whole interval (10 days). Significant exponential correlations were observed between N$_2$O flux and nitrification or denitrification rates ($P<0.01$). The results also indicated that nitrification dominated and played a more important role in N$_2$O emissions than denitrification under the irrigation conditions of the study (water-filled pore space was 40.0 to 66.6%). Cumulative N$_2$O emissions were 0.48-5.01 kg N ha$^{-1}$ in the cucumber growing season, accounting for 0.28-0.38% of nitrogen input. Compared to N$_{1200}$ treatment N$_{600}$ significantly reduced the rate of N$_2$O emissions by 53.4%, and also maintained cucumber yield. Based on this study, 50% of the traditional N fertilizer rate (N$_{600}$) was considered sustainable for greenhouse cucumber production in the North China Plain.

Keywords: Cucumber, Environmental factor, Nitrogen fertilizer, N$_2$O flux. Soil NO3$^-$N.

INTRODUCTION

Nitrous oxide (N$_2$O) emissions significantly impact global warming and the depletion of ozone in the stratosphere (Akimoto et al., 2005; Meade et al., 2011). Over recent years, due to intensive human practices, the rate of global N$_2$O emissions has increased by 17% from 1990 to 2005 (Kroewe et al., 1999; IPCC, 2007). Agricultural soil is a major source of N$_2$O emissions, releasing 6.3 Tg N$_2$O–N yr$^{-1}$ into the atmosphere, accounting for 58% of total N$_2$O emissions (Mosier et al., 1998; IPCC, 2007). Nitrification and denitrification are two major processes producing N$_2$O, representing approximately 70% of total global N$_2$O emissions (Moiser et al., 1996; Malla et al., 2005). Therefore, environmental factors (e.g. soil moisture, temperature, pH, and rainfall) and human factors (e.g. irrigation and nitrogen fertilization) (Smith et al., 2003; He et al., 2007; Baggs et al., 2010; Sanchez-Marti et al., 2010) related to nitrification and denitrification can affect N$_2$O emissions. Nitrogen fertilizer application and irrigation are regarded as two of the most important...
elements influencing N$_2$O emissions (Zhang et al., 2008). Wang et al. (2011) and He et al. (2009) reported that seasonal N$_2$O emissions from vegetable fields increased significantly with nitrogen fertilizer application ($P < 0.0001$). Increased N availability can increase microbial nitrification and denitrification rates, thereby escalating N$_2$O emissions (Liu et al., 2011). In China, the rate of fertilizer-induced N$_2$O emissions from agricultural soils was 198.9 Gg N$_2$O–N in 1997, with 66.9 Gg N$_2$O–N produced by vegetable fields in 2009 (Lu et al., 2006; Wang et al., 2011). Additionally, the N$_2$O flux from irrigation was 1.17 times more than that without irrigation in greenhouse conditions (Zhang et al., 2002).

Vegetable production has developed rapidly in recent years, but excessive fertilization has become a common phenomenon in China. In greenhouse vegetable cropping systems, nitrogen fertilization rates in Hebei Province are about 1,269 kg N ha$^{-1}$, which are 2.8 times that of the recommended rate (Zhang et al., 2005). In cucumber fields, the accumulated nitrogen in Shandong Province was above 1,500 kg ha$^{-1}$ after a growing season, which was sufficient for the occurrence of soil nitrification and denitrification (Ma et al., 2000). In addition, the temperature inside greenhouses is always higher than that outside, and soil usually lacks plowing and insolation. All of these factors exacerbate N$_2$O emissions (Zhang et al., 2002; Xiong et al., 2006; He et al., 2009; Alomran et al., 2013). The N$_2$O emissions from China crop fields varied from 275 to 292 Gg N$_2$O–N yr$^{-1}$ during the 1990s, with vegetable crops accounting for about 20% of that amount (Zheng et al., 2004; Lu et al., 2006; Wang et al., 2011). Further, the background N$_2$O emissions (emissions induced by factors other than fertilization) from vegetable fields increased from 6.76 Gg N$_2$O–N in 1990 to 19.6 Gg N$_2$O–N in 2009 (He et al., 2009; Wang et al., 2011).

A number of studies have been carried out on N$_2$O emissions in wheat fields (Meade et al., 2011), maize fields (Liu et al., 2011), rice paddies (Pramanik et al., 2013) and grasslands (Liu et al., 2010); however, no studies have reported on N$_2$O emissions from greenhouse cucumber crops. In this study, four N fertilization levels under the same irrigation conditions in a greenhouse in the North China Plain were established. The aims of this study were to: (i) monitor the nitrification and denitrification rates, (ii) compare the effects of different N rates on N$_2$O flux during the cucumber growing season, (iii) determine the factors impacting N$_2$O emissions, and (iv) identify reasonable nitrogen fertilizer application rate.

MATERIALS AND METHODS

Study Site

The study site was located at Mazhuang Experimental Station in Xinji County of Hebei Province (115°17′37″E, 37°47′53″N) in the North China Plain. The selected greenhouse was 39 m long and 7.5 m wide, with a wall made of brick-concrete, and brackets constructed with welded metal wires. The soil texture was sandy loam, containing 8.93 g kg$^{-1}$ of organic carbon (by H$_2$SO$_4$–K$_2$Cr$_2$O$_7$ oxidation), 1.55 g kg$^{-1}$ of total nitrogen (by Kjeldahl digestion), 32.4 mg kg$^{-1}$ of available phosphorus (Olsen-P method), 165.3 mg kg$^{-1}$ of available potassium (with NH$_4$OAc extraction), at a pH of 6.6 (1:2.5 soil-water ratios) and bulk density of the 0-20 cm topsoil of 1.35 g cm$^{-3}$ (average fertilization and non-fertilization belts) (Lu, 2000). The cucumber variety used in the experiment was Bomei 11, and the cucumbers were planted on 18 February, 2009, and harvested on 3 July, 2009.

Experimental Design and Management

Four nitrogen treatments with three replications (Plot size: 6x1.8 m) were applied as urea: (1) traditional, nitrogen fertilizer input 1,200 kg N ha$^{-1}$ (N$_{1200}$); (2) 900 kg N ha$^{-1}$ (N$_{900}$); (3) 600 kg N ha$^{-1}$ (N$_{600}$), and (4) the
control, no nitrogen input (N₀). Traditional nitrogen amount was determined as per previous research in Hebei Province (Zhang et al., 2005). Triple superphosphate (300 kg P₂O₅ ha⁻¹) and potassium sulfate (525 kg K₂O ha⁻¹) were applied for each treatment. Furrow irrigation (5,190 m³ ha⁻¹ in total) was applied, and the irrigation frequency was consistent with the schedule of local farmers (Table 1). The plot was isolated by 1 m deep polyvinyl chloride (PVC) boards. Three rows of cucumbers were planted in each plot, with a row space of 60 cm and an interplant distance of 30 cm.

Table 1. Nitrogen input rates, irrigation rates and date of sampling in greenhouse cucumber experiment (2009).

<table>
<thead>
<tr>
<th>Date</th>
<th>Growth stage</th>
<th>N rate (kg ha⁻¹)</th>
<th>Irrigation (m³ ha⁻¹)</th>
<th>Dates of N₂O sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Feb</td>
<td>Seedling period Basal fertilizer</td>
<td>N₆₀₀ N₉₀₀ N₁₂₀₀</td>
<td>120 180 240 270</td>
<td>16 Feb, 18 Feb, 22 Feb, 1 Mar, 9 Mar, 16 Mar, 22 Mar, 29 Mar, 270 360</td>
</tr>
<tr>
<td>28 Feb</td>
<td></td>
<td></td>
<td></td>
<td>4 May, 6 May, 8 May, 10 May, 15 May, 17 May, 20 Apr, 22 Apr, 24 Apr, 26 Apr, 28 Apr, 29 Apr, 2 Apr, 3 Apr, 5 Apr, 7 Apr, 10 Apr, 11 Apr, 13 Apr, 15 Apr, 17 Apr, 20 Apr,</td>
</tr>
<tr>
<td>9 Mar</td>
<td></td>
<td></td>
<td></td>
<td>9 Apr, 1 Apr, 11 Apr, 13 Apr, 15 Apr, 17 Apr, 20 Apr,</td>
</tr>
<tr>
<td>1 Apr</td>
<td>Blooming period Topdressing</td>
<td>60 90 120 480</td>
<td>12 Apr, 14 Apr, 16 Apr, 18 Apr, 20 Apr,</td>
<td></td>
</tr>
<tr>
<td>11 Apr</td>
<td></td>
<td></td>
<td></td>
<td>1 Apr, 3 Apr, 5 Apr, 7 Apr, 9 Apr, 10 Apr, 11 Apr, 13 Apr, 15 Apr, 17 Apr, 20 Apr,</td>
</tr>
<tr>
<td>22 Apr</td>
<td>Initial fruit period</td>
<td>60 90 120 480</td>
<td>22 Apr, 24 Apr, 26 Apr, 28 Apr, 29 Apr, 1 May,</td>
<td></td>
</tr>
<tr>
<td>4 May</td>
<td></td>
<td></td>
<td></td>
<td>4 May, 5 May, 6 May, 8 May, 10 May, 15 May, 17 May, 19 May, 21 May, 24 May, 26 May, 28 May, 30 May, 1 Jun, 4 Jun,</td>
</tr>
<tr>
<td>15 May</td>
<td>Full fruit period</td>
<td>60 90 120 480</td>
<td>16 Jun, 18 Jun, 20 Jun, 22 Jun, 25 Jun,</td>
<td></td>
</tr>
<tr>
<td>26 May</td>
<td></td>
<td></td>
<td></td>
<td>16 Jun, 18 Jun, 20 Jun, 22 Jun, 25 Jun,</td>
</tr>
<tr>
<td>5 Jun</td>
<td>End fruit period</td>
<td>60 90 120 480</td>
<td>480</td>
<td>16 Jun, 18 Jun, 20 Jun, 22 Jun, 25 Jun,</td>
</tr>
<tr>
<td>16 Jun</td>
<td></td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>21 Jun</td>
<td></td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>25 Jun</td>
<td></td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>5190</td>
</tr>
</tbody>
</table>

* Day of fertilization was “the first day of N₂O sampling”.
 b N₆₀₀, N₉₀₀ and N₁₂₀₀ representing 600, 900 and 1,200 kg ha⁻¹ of N application amount, respectively.

Figure 1. Schematic of experimental plot (fertilization and non-fertilization belts) and location of the chambers.
for each plot.

N_2O samples were collected using closed static chambers. Chambers (20 cm diameter×25 cm height) consisted of a chamber cap and a pedestal made of polyvinyl chloride (PVC) materials. The ring pedestal with a flume around the top was inserted to a depth of 5 cm into the soil before sampling to keep the chamber sealed (Figure 1). N_2O samples were collected at 1 or 2 day (d) intervals in the first 10 days after fertilizer application, and then at 7 day intervals in the other periods (Table 1). Sampling was carried out from 10:00 to 12:00 every day. Gas samples were taken using a 50 mL airtight syringe attached to a three-way stop cork at fixed intervals of 0, 10, 20, and 30 min after chamber closure, and then stored in evacuated bags made of inert aluminum-coated plastic. The N_2O samples were analyzed using a gas chromatograph (GC7890, Agilent Technologies Inc., USA) fitted with an electron capture detector (ECD) set at 300 °C. The column temperature was maintained at 40°C and the carrier gas was argon-methane (5%) at a flow rate of 30 mL min$^{-1}$. Details for this method were described by Zhang et al. (2011). N_2O fluxes were calculated according to Li et al. (2009).

Determination of Nitrification and Denitrification Rates Using BaPS System

The nitrification and denitrification rates were determined using Barometric Process-Separation (BaPS), which is based on measuring O_2, CO_2, and total gas balances inside an isothermal and gas-tight soil system. Nitrification (consumption of O_2 by ammonia oxidizing bacteria and archaea bacteria), denitrification (production of nitrogen containing gases such as NO, N_2O, and N_2), and soil respiration (consumption of O_2 and generation of equivalent volume of CO_2) are the main biological processes responsible for gas pressure changes in this system. The gross nitrification and denitrification rates and respiration can be calculated based on the gas and inverse balance. The basic principle of BaPS and relevant measuring processes are discussed in Muller et al. (2004) and Liu et al. (2005). Many studies have shown consistent gross nitrification and denitrification rates by BaPS and 15N–pool dilution (Ingwersen et al., 1999; Breuer et al., 2002). In this study, undisturbed soil (10 cm depth) was sampled and sealed four times per month in the cucumber growing season, from February to June, by circular stainless rings equipped with the BaPS. At the same time, N_2O samples were collected simultaneously. All soil and gas samples were transported to the laboratory for analysis.

Auxiliary Measurements

Topsoil samples (10 cm depth) were randomly collected on the same day as N_2O sampling. Analysis of $NO_3^–$-N concentrations in the soil was measured by extracting 10 g of mixed topsoil with 100 mL of 2 M KCl solution. The topsoil moisture content was determined gravimetrically by oven-drying samples at 105°C for > 12 hours. The water-filled pore space (WFPS) was calculated by $WFPS(\%)= (Soil \ bulk \ density\times Soil \ moisture \ content)/(1-soil \ bulk \ density/ 2.65)$. The topsoil (5 cm) and air temperatures in the chamber as well as in the greenhouse were measured simultaneously when N_2O was sampled. Cucumber fruits were harvested and weighed by an electronic scale.

Statistical Analysis

Differences between treatments were determined by analysis of variance (ANOVA) and Tukey’s multiple comparison tests using SPSS 18.0 statistical software. The significance levels for linear or non-linear regression curves were determined using F-test. Pearson correlation analysis was applied to investigate the associations of nitrification and denitrification rates and
RESULTS AND DISCUSSION

N₂O Flux of Fertilization and Non-fertilization Belts

Details of soil temperature and soil moisture content (WFPS) are outlined in Figure 2-a. Soil temperature ranged from 8.6 to 33.8°C, with a mean of 24.4°C. WFPS changed strongly with irrigation, and ranged from 40.0 to 66.6%, with a mean of 55.8%.

Similar temporal trends in N₂O fluxes for the fertilized and non-fertilized belts were observed for each treatment during the growing season [Figure 2 (b and c)]. The N₂O fluxes varied from 5.99 to 1,098.7 µg m⁻² h⁻¹ and from 4.61 to 538.0 µg m⁻² h⁻¹ for the fertilized and non-fertilized belts, respectively. The peaks mainly appeared following N fertilization and appeared on the fourteenth day after base nitrogen application, at first irrigation and when the soil temperature was high (19.6°C). The rise in both temperature and soil moisture led to the significant increase in N₂O flux (Castaldi, 2000; Smith et al., 2003). He et al. (2009) also reported that no N₂O emission peak occurred, even after fertilization, when soil temperatures were below 15°C.

N₂O flux peaks in the fertilized (Figure 2-b) and non-fertilized (Figure 2-c) belts appeared after topdressing. The N₂O fluxes decreased notably over a week and gradually tended to be stable after the peak appeared. Similar peaks in N₂O fluxes were observed by Malla et al. (2005) on application of nitrogen fertilizer. For different nitrogen treatments in the present study, N₂O emissions on the first five days were higher than that of the non-fertilized belts after topdressing. N₂O emissions on the first day, the first three days, and the first five days in the fertilized belts accounted for 41.4 to 80.0%, 76.8 to 91.4%, and 90.6 to 95.2% of total N₂O emissions over the 10 days, respectively, while the corresponding proportions in the non-fertilized belts were 18.0 to 68.6%, 52.1 to 86.2%, and 75.8 to 95.0%, respectively. These results illustrated that N₂O emissions were concentrated in the
first five days for both the fertilized and non-fertilized belts, especially in the first three days after topdressing. These observations were consistent with He et al. (2007), who found a peak in N₂O emissions on the first or second day after fertilizer application in greenhouse tomatoes.

Nitrification and Denitrification Rates

The rates of nitrification and denitrification increased with the extension of the cucumber growing season and increase in air temperature; however, they decreased significantly with the decrease in N fertilizer application (Figure 3). The rates of nitrification and denitrification under N₆₀₀ treatment were reduced by 24.8 to 34.0% (average of 30.2%) and 15.7 to 31.8% (average of 22.5%), respectively, compared to these under N₁₂₀₀ treatment. Soil moisture, air temperature, and soil temperature were correlated positively with both nitrification and denitrification rates (Table 2). Increases in suitable soil moisture (WFPS of 40.0 to 66.6%) or temperature (8.6 to 33.8°C) improved the nitrification and denitrification rates (Breuer et al., 2002; Cao et al., 2006). Correlation analysis demonstrated significant exponential relationships between the rates of nitrification and denitrification and N₂O flux (Figure 4). Similar findings were observed by Chen and Huang (2006). The nitrification of treatments N₀, N₆₀₀, N₉₀₀, and N₁₂₀₀ accounted for 72.3, 64.5, 66.7, and 69.8%, respectively, of total nitrification and denitrification, with an average value of 68.3%. This indicated that nitrification was

![Figure 3](image_url)

Figure 3. Monthly variation of gross nitrification rate (mean value±standard deviation) (a) and denitrification rate (mean value±standard deviation) (b) of greenhouse soil under different nitrogen conditions and the monthly temperature (curve with the square symbol). Different letters (a, b) denote significantly different between treatments at P< 0.05. N₀, N₆₀₀, N₉₀₀, and N₁₂₀₀ are the treatments fertilized with 0, 600, 900, and 1,200 kg N ha⁻¹, respectively.
Table 2. Correlation between the rate of nitrification and denitrification and environmental factors.

<table>
<thead>
<tr>
<th>WFPS (%)</th>
<th>Air temperature in greenhouse (°C)</th>
<th>Soil temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 33</td>
<td>n = 33</td>
<td>n = 33</td>
</tr>
<tr>
<td>Nitrification rate (µg kg⁻¹ h⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₀</td>
<td>0.439*</td>
<td>0.388</td>
</tr>
<tr>
<td>N₆₀₀</td>
<td>0.626**</td>
<td>0.359</td>
</tr>
<tr>
<td>N₉₀₀</td>
<td>0.541**</td>
<td>0.386</td>
</tr>
<tr>
<td>N₁₂₀₀</td>
<td>0.499*</td>
<td>0.683**</td>
</tr>
<tr>
<td>Denitrification rate (µg kg⁻¹ h⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₀</td>
<td>0.223</td>
<td>0.200</td>
</tr>
<tr>
<td>N₆₀₀</td>
<td>0.630**</td>
<td>0.359</td>
</tr>
<tr>
<td>N₉₀₀</td>
<td>0.403</td>
<td>0.696**</td>
</tr>
<tr>
<td>N₁₂₀₀</td>
<td>0.656**</td>
<td>0.555**</td>
</tr>
</tbody>
</table>

*a Number of observations; * Significant at P< 0.05, ** Significant at P< 0.01.

The dominant process producing N₂O in soil (WFPS of 40.0 to 66.6%). This is in agreement with Sanchez-Martin et al. (2010), who found that nitrification was more important in the production of N₂O compared with denitrification when WFPS was 56 to 75%.

N₂O emissions are significantly influenced by farming activities such as nitrogen application and irrigation, which can alter the NO₃⁻-N concentrations and moisture in the soil (Laville et al., 2011). Compared to the control, nitrogen application increased the rates of nitrification and denitrification and, consequently, led to a significant increase in N₂O emissions. We observed significant correlations in soil NO₃⁻-N with N₂O emissions in the cucumber season (Figure 5), which is in agreement with other studies that...
have reported increased emissions with increasing soil NO$_3^-$-N (Stevens et al., 1998; Laville et al., 2011).

Irrigation often causes the soil pores to fill with water, which aggravates the anaerobic environment and intensifies denitrification (Clemens et al., 2008). Bateman and Baggs (2005) and Baggs et al. (2010) stated that the optimum WFPS for ammonia oxidation was around 65% WFPS. At a WFPS of between 30 and 70%, the relationship between aerobic microbial processes and WFPS appeared linear (Linn and Doran, 1984). Generally, N$_2$O emitted under 35 to 60% WFPS is produced during nitrification, while denitrification is the main process producing N$_2$O under 70-90% WFPS (Bateman and Baggs, 2005; Liu et al., 2007; Zhang et al., 2009; Laville et al., 2011). According to Lan et al. (2013), the effects of moisture on N$_2$O emissions were probably masked by the effects of fertilization. When mineral N content of the soil is low, irrigation does not affect N$_2$O emissions significantly (He et al., 2009). In this study, fertilizer was dissolved and flushed with furrow irrigation water during the topdressing period, and a significant positive relationship was found between N$_2$O flux and WFPS (Table 3). These findings are supported by a number of previous studies (Lin et al., 2010; Laville et al., 2011). Soil temperature also significantly affects N$_2$O emissions when soil nitrate content and soil moisture are relatively constant (He et al., 2009). Cao et al. (2006) also found a highly significant positive correlation (r = 0.781) between soil temperature (from 5 to 32°C) and N$_2$O emissions during the growing season of Chinese cabbages. In this study, soil temperature during the cucumber growing season ranged from 8.6 to 33.8°C, and N$_2$O emissions showed a significant positive relationship with soil temperature, except for the control (Table 3).

Cumulative N$_2$O Emissions and Cucumber Yield

The effects of nitrogen application on cumulative N$_2$O emissions and cucumber yield were significant (Table 4). N$_2$O emissions from the fertilized and non-fertilized belts were calculated by integrating the linearly interpolated data in the cucumber growing season, and the cumulative N$_2$O emissions ranged from 0.48 to 5.01 kg N ha$^{-1}$. Taking N$_2$O emissions from the N$_0$ treatment as the background emissions, the fertilizer-induced N$_2$O emission factors for N$_{600}$, N$_{900}$ and N$_{1200}$ were 0.30, 0.28 and 0.38% of nitrogen input, respectively. Less N$_2$O emissions were produced when less nitrogen fertilizer was used (Table 4). Compared to the N$_{1200}$ treatment, cumulative N$_2$O emissions were reduced by 53.4% in the N$_{600}$ treatment. At the same time, cucumber yield increased by 6.02%, which showed that an appropriate reduction in nitrogen application reduced cumulative N$_2$O emissions significantly without lowering the cucumber yield.

| Table 3. Correlation between N$_2$O flux and environmental factors. |
|------------------------|-------------------|-------------------|
| WFPS (%) | Air temperature in greenhouse (°C) | Soil temperature (°C) |
| n2 = 33 | n= 33 | n= 33 |
| N$_0$ | 0.385* | -0.037 | 0.084 |
| N$_{600}$ | 0.667** | 0.463** | 0.497** |
| N$_{900}$ | 0.707** | 0.392* | 0.428** |
| N$_{1200}$ | 0.693** | 0.765** | 0.756** |

* Number of observations; * Significant at P< 0.05, ** Significant at P< 0.01.
Effects of N on Soil N\textsubscript{2}O Emissions in Greenhouse

Table 4. Cucumber yields, N\textsubscript{2}O emission and emission factors under different nitrogen conditions.

<table>
<thead>
<tr>
<th>Treatments (a)</th>
<th>Yield ((10^4 \text{ kg ha}^{-1}))</th>
<th>Increasing ratio (%)</th>
<th>N\textsubscript{2}O emissions</th>
<th>Cumulative N\textsubscript{2}O emissions (135 d) ((\text{ kg N ha}^{-1}))</th>
<th>Emission factor (%) (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_0)</td>
<td>11.9 b (\dagger)</td>
<td>—</td>
<td>0.28 d</td>
<td>0.20 d</td>
<td>0.48 d</td>
</tr>
<tr>
<td>(N_{600})</td>
<td>16.5 a</td>
<td>22.9</td>
<td>1.56 c</td>
<td>0.74 c</td>
<td>2.30 c</td>
</tr>
<tr>
<td>(N_{900})</td>
<td>15.5 a</td>
<td>18.8</td>
<td>2.06 b</td>
<td>0.95 b</td>
<td>3.01 b</td>
</tr>
<tr>
<td>(N_{1200})</td>
<td>15.4 a</td>
<td>15.9</td>
<td>3.37 a</td>
<td>1.64 a</td>
<td>5.01 a</td>
</tr>
</tbody>
</table>

\(a\) \(N_0\), \(N_{600}\), \(N_{900}\), and \(N_{1200}\) are the treatments fertilized with 0, 600, 900, and 1,200 kg N ha\(^{-1}\), respectively; \(b\) Values with the same letter means no significant different among different treatments by Tukey with three replications \((P>0.05)\); \(c\) Emission factor induced by total applied N from chemical fertilizer.

CONCLUSIONS

We investigated the N\textsubscript{2}O emissions and soil nitrification and denitrification rates under different nitrogen fertilization treatments including traditional nitrogen \((N_{1200})\), 75\% of traditional nitrogen \((N_{900})\), 50\% of traditional nitrogen \((N_{600})\), and no nitrogen treatments \((N_0)\) in a cucumber growing greenhouse in the North China Plain. N\textsubscript{2}O emissions and nitrification and denitrification rates in the greenhouse soils were strongly related to fertilizer nitrogen inputs. Compared to the \(N_{1200}\) treatment, N\textsubscript{2}O emissions and nitrification and denitrification rates of \(N_{600}\) were reduced by 53.4, 30.2 and 22.5\%, respectively. High N\textsubscript{2}O emissions occurred in the first five days after topdressing, which accounted for more than 75.8\% of total emissions during the 10-day study period. Water-filled pore space \((\text{WFPS})\), air temperature, and soil temperature affected the nitrification rate, denitrification rate, and N\textsubscript{2}O emissions, especially after nitrogen fertilizer application. The nitrification and denitrification rates presented an exponential relationship with N\textsubscript{2}O emissions \((P<0.01)\), and nitrification was the main biological process producing N\textsubscript{2}O under the traditional irrigation conditions in this experiment \((\text{WFPS} \text{ of } 40.0 \text{ to } 66.6\%)\). N\textsubscript{2}O emissions ranged from 0.48 to 5.01 kg ha\(^{-1}\) during the cucumber growing season, and 0.28-0.38\% \((\text{average } 0.32\%)\) of the nitrogen application rate was emitted as N\textsubscript{2}O-N. The improved N-fertilizer management reduced the nitrogen application rate by 50\% \((N_{600})\), increased cucumber yield by 6.02\%, and significantly decreased N\textsubscript{2}O emissions \((P<0.01)\).

Based on this study, for the present greenhouse cucumber production in Hebei Province in the North China Plain, appropriate reduction in nitrogen fertilizer application significantly reduced N\textsubscript{2}O emissions without any negative effect on cucumber yield. Compared to the traditional nitrogen application rate i.e.1,200 kg N ha\(^{-1}\), a 50\% reduction is suggested.

ACKNOWLEDGEMENTS

The study was supported by the National Basic Research Program of China (973 Program, 2011CB100501), National 863 Program of China (2013AA102901), Special Fund for Agro-scientific Research in the Public Interest (201203077), and the Technology Innovation Ability Construction Projects, Beijing Academy of Agriculture and Forestry Sciences (KJCX20140415).

REFERENCES

اکسید نیتروژن (N₂O) اثر مهمی روی گرم شدن زمین دارد و به تخمین ازون در استرس منجر می‌شود. زمین‌های کشاورزی به عنوان منبع اصلی تهیه نیتروژن هستند. در حالی که

کاشت گلخانه‌ای سبزیجات به سرعت در چین توسعه یافته است. با وجود مصرف چندین باره از حد کودهای شیمیایی در گلخانه‌ها به تولید سبزی‌های مختلف که می‌تواند تهیه نیتروژن را افزایش دهد، داده‌های پژوهشی در زمینه انتشار این گاز در فاصله تولید سبزیجات مانند خیار همچنان محدود است. در این رابطه، در

پژوهش حاضر، چهار تیمار کود نیتروژن شامل 1000 کیلو گرم در هکتار (N1200)، 600 کیلو گرم در هکتار (N600)، و شاهد (N0) روی محسوس خیار در دشت شمالی چین بررسی شد. نتایج نشان داد که بیشتر تصاعد گاز N₂O در نواحی گیاهی (1000 روز) بوده طی پنج روز اول بعد از کودپاشی سرک رخ داد. از تحلیل داده‌های رابطه‌های معنی‌دار نمایی (P < 0.01) بین جریان انتشار N2O و نرخ انتشارات سازی و نیروز زدایی به دست آمد. همچنین، نتایج نشان داد که در انتشار و تصاعد گاز مزبور در شرایط آبیاری (به تخلخل بر سر حناچه آب در خاک بین 40% تا 60%) فراوانی نیتروژن سازی غالب بود و نقش مهمی از انتشارات زدایی در این مطالعه نبود. انتشار نیتروژن سازی (N2O) نیست. فصل خیار بین 2010-2011 کیلو گرم در هکتار بود که معادل 35% بود. بین نیتروژن افزوده شده بین خاک را شامل می‌شد. در مقایسه با تیمار N1201، نیتروژن (N600) به طور معنی‌داری نرخ انتشار N2O در حدود 50% کاهش داد و سطح عملکرد خیار را حفظ کرد. بر این پایه این پژوهش، مصرف نیتروژن در حد (n600) معادل 15% در نسبت را در دشت شمالی چین می‌تواند به عنوان مصرف پایدار برای تولید خیار گلخانه‌ای از در این منطقه تلقی شود.