Mathematical Models of Drying Pomegranate Arils in Vacuum and Microwave Dryers

S. Minaei1, A. Motevali2∗, E. Ahmadi3, and M. H. Azizi3

ABSTRACT

Drying behavior of two types of pomegranates as well as the effect of drying conditions on moisture loss trend and on effective diffusion coefficient of arils are discussed in this article. Also, an appropriate mathematical drying model as well as the activation energy of sweet and sour pomegranate arils, dried in vacuum and microwave driers are pursued and presented. Results of regression analysis of the studied models indicated that Midili and Page models exhibit the best fit to the data obtained for vacuum and microwave drying, respectively. Effective diffusion coefficient of pomegranate arils was estimated in the ranges of 0.74×10^{-10} to 52.5×10^{-10} m^2 s^{-1} and 3.43×10^{-10} to 32.05×10^{-10} m^2 s^{-1} for vacuum and microwave driers, respectively. Activation energy figures for the vacuum drier were 52.27 and 52.83 kJ while for microwave drier they were 17.22 and 23.83 kJ for the cases of sweet and sour variety pomegranates, respectively.

Keywords: Drying model, Microwave drier, Pomegranate aril, Vacuum drier.

INTRODUCTION

Pomegranate (Malus Granatum) belongs to Punicaceae family (Shahrestani, 1998). Overall, the fruit can be divided into sour and sweet types. Its origin is Near East, especially Iran, such that its sour kind is found in large populations in the forests of northern Iran. It is produced in Spain and in the Southern coastal countries of the Mediterranean Sea (Shahrestani, 1998).

Drying is one of the oldest preservation methods for such fruits as pomegranate. Drying of food materials depends on the heat and mass transfer characteristics of the product being dried. Knowledge of the temperature and moisture distributions throughout the product is vital for equipment as well as process design, quality control, and choice of appropriate storage and handling practices. Mathematical models that describe drying mechanisms of foodstuff can provide the required temperature and moisture information for proper control of the process (Rafiee et al., 2009).

The most common driers employed in drying of fruits are fan-assisted convection driers. These kinds of driers can suffer from some such undesirable effects as surface burning, shrinkage and discoloration. Also, long time taking drying periods along with high energy consumption are other disadvantages associated with hot air driers. Their modification or use of other types of driers utilizing other different drying systems can probably overcome some of the mentioned problems. Use of vacuum in a drier is an alternative for product quality improvement. Also, a reduction of pressure,

1 Department of Agricultural Machinery Engineering, College of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
2 Department of Engineering, Shahre Rey Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
3 Corresponding author, e-mail: ali.motevali62@yahoo.com
4 Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
namely an application of vacuum can reduce the required drying temperature, leading to an improvement in the product quality (Jaya and Das, 2003; Kompany, et al., 1993). Vacuum drying is a unit operation employed in chemical and engineering processes, in which moisture bearing material is dried under sub-atmospheric pressures. The lower pressure allows the drying temperature to be lowered while higher quality product being obtained as compared with the conventional process which occurs at atmospheric pressure (Fernando and Thangavel, 1987; Jaya and Das, 2003).

Lee and Kim (2009) investigated the vacuum drying kinetics of Asian white radish slices. They determined the effect of drying temperature and of sample thickness on characteristics of white radish slices. Arevalo and Fernando–Pinedo (2007) investigated the drying kinetics of pumpkin at pressure and temperature levels of 5-25 Pa, and 50-70°C, respectively.

Microwave drying of foodstuff is a relatively inexpensive method, having attracted the attention of many researchers in recent years. Microwaves are electromagnetic waves within the range of 300 MHz to 300 GHz. Electromagnetic energy can be absorbed by water-containing materials and converted to heat. Dipole rotation can explain the mechanism of heat generation in microwave-exposed foods. Foodstuffs contain such polar molecules as water. These molecules exhibit random orientations, such that when placed in an electric field they tend to orient themselves with the field's polarity. In a microwave field, polarity changes occur at a rapid sequence (Schiffman, 1992).

Karaaslan and Tuncer (2008) used microwave, convection, and microwave-convection driers for drying of spinach leaves and investigated the effects on the drying period, rate of drying and as well on color changes. Ilknur (2007) used microwave, convection and microwave-convection driers for drying of pumpkin slices and determined the optimum drying time, final product color, as well as energy consumption. The objective of developing drying models for agricultural products is to predict the drying trend (Gogus and Maskan, 1999). Numerous studies have been conducted on application of microwaves in seed drying (Adu and Otten, 1996; Walde et al., 2002), drying of vegetables (Litvin et al., 1998; Lin et al., 1998; Alibas, 2006), and fruit drying (Tulasidas et al., 1997; Funebo and Ohlsson, 1998) operations.

Selection of a standard model plays an important role on the goodness of fit of the model in describing the drying of a product. Therefore, a knowledge of such physical and thermal characteristics of agricultural products as mass and heat transfer as well as the effective moisture diffusivity coefficients is important and indispensable. The objectives followed in this study are as follows:

1). An investigation of the drying behavior of sour and sweet pomegranate arils.
2). Determining the best mathematical model that can describe the kinetics of the drying process.
3). Assessing the effect of different drying conditions on the rate of moisture loss.
4). Determining the effect of drying conditions on the effective diffusivity coefficient.
5). Calculation of the value of activation energy in sour and sweet pomegranate arils dried in either of the vacuum or microwave driers.

MATERIALS AND METHODS

Material Preparation and Drying Conditions

The fresh sour pomegranates for the study were obtained from Juybar city of Mazandaran Province while the sweet ones obtained from Neyriz in Fars Province. The fruits were kept in a refrigerator at 5°C before commencement of the tests. The initial moisture content of the fruits was determined through oven drying. Twenty-gram samples were placed in the oven at
105±1°C for about four hours until no significant difference observed between two successive weighings (Aghbashlo et al., 2008). The tests were all replicated 5 times. Initial moisture contents of 333% and 342.2% (dry basis) were found for the sour, and sweet pomegranates, respectively.

The Experimental Facilities

Pomegranate arils were dried by means of each of vacuum (VS-1202 V5, Korea, ±1°C) and microwave driers (SAMSUNG, 75DK300036V, model: M945, Korea). A diaphragm type vacuum pump (Serno: 26431801, Germany, ±1 kPa) was employed for creating the necessary vacuum. In vacuum drying method, drying was performed at five temperature levels of: 50, 60, 70, 80, 90°C, and 250 kPa of vacuum. Air parameters were adjusted through an assessment of temperature, pressure and humidity. A thermometer (Lutron, TM-925, Taiwan, ±0.1°C), and a pressure gauge (PVR 0606A81, Italy, ±0.1 kPa) were respectively made use of to measure air temperature and pressure in the vacuum chamber while a humidity meter (Testo 650, 05366501, Germany, ±0.1%) being employed to determine measure the relative humidity. Ambient temperature was found out to be 20-26°C while the relative air humidity varied within the range of 22-27%. As schematic view of a microwave drier is illustrated in Figure 1.

Moisture ratio for pomegranate arils was found out using the following equation:

\[
MR = \frac{M_t - M_e}{M_o - M_e}
\]

(1)

where \(MR\) is moisture ratio (dimensionless), \(M_t\) moisture content at any given time (kg water kg\(^{-1}\) solids), \(M_e\) standing for equilibrium moisture content (kg water kg\(^{-1}\) solids) and \(M_o\) representing the initial moisture content. As \(M_e\) is too far lower than either \(M_o\) or \(M_t\), it is neglected (Diamante and Munro, 1991), then,

\[
MR = \frac{M_t}{M_o}
\]

(2)

Drying curves were fitted with ten different moisture ratio models (Table1). These models are generally derived by simplifying the general series solutions of Fick’s second law and considering a direct relationship between the average water content and drying time (Doymaz, 2004).

Three different criteria considered for an evaluation of best fit: correlation coefficient, \(R^2\); chi square, \(\chi^2\); and Root Mean Square Error, \(RMSE\) (Aghbashlo et al., 2007; Hossain and Bala, 2002).
Table 1. Models employed for fitting of experimental data.

<table>
<thead>
<tr>
<th>Number</th>
<th>Model</th>
<th>Model reference name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$MR = \exp(-kt)$</td>
<td>Newton</td>
<td>(Lewis, 1921)</td>
</tr>
<tr>
<td>(2)</td>
<td>$MR = a \exp(-kt)$</td>
<td>Henderson and Pabis</td>
<td>(Henderson and Pabis, 1961)</td>
</tr>
<tr>
<td>(3)</td>
<td>$MR = \exp(-kt^n)$</td>
<td>Page</td>
<td>(Page, 1949)</td>
</tr>
<tr>
<td>(4)</td>
<td>$MR = a \exp(-kt) + c$</td>
<td>Logarithmic</td>
<td>(Yagcioglu et al., 1999)</td>
</tr>
<tr>
<td>(5)</td>
<td>$MR = a \exp(k_0t) + b \exp(k_1t)$</td>
<td>Two term</td>
<td>(Henderson, 1974)</td>
</tr>
<tr>
<td>(6)</td>
<td>$MR = a \exp(-kt) + (1-a) \exp(-kbt)$</td>
<td>Approximation of diffusion</td>
<td>(Yaldiz et al., 2001)</td>
</tr>
<tr>
<td>(7)</td>
<td>$MR = a \exp(-kt) + (1-a) \exp(-kat)$</td>
<td>Two-term exponential</td>
<td>(Sharaf-Eldeen et al., 1980)</td>
</tr>
<tr>
<td>(8)</td>
<td>$MR = a \exp(-kt^n) + bt$</td>
<td>Midili</td>
<td>(Menges and Ertekin, 2005)</td>
</tr>
<tr>
<td>(9)</td>
<td>$MR = a \exp(-kt) + (1-a) \exp(-gt)$</td>
<td>Verma et al</td>
<td>(Verma et al., 1985)</td>
</tr>
<tr>
<td>(10)</td>
<td>$MR = \exp(-kt^n)$</td>
<td>Modified Page</td>
<td>(Wang et al., 2007)</td>
</tr>
<tr>
<td>(11)</td>
<td>$MR = 1 + at + bt^2$</td>
<td>Wang and Singh</td>
<td>(Chen and Wu, 2001)</td>
</tr>
</tbody>
</table>

Drying Rate

Drying rate of pomegranate arils was assessed using the following equation (Akpinar et al., 2003)

\[
\text{Drying Rate} = \frac{M_{t+dt} - M_t}{dt}
\]

where M_{t+dt} is moisture content at time $t+dt$ (kg water kg\(^{-1}\) of dry matter), M_t stands for moisture content at time t (kg water kg\(^{-1}\) dry matter) and t representing the drying time (min).

A graduated cylinder containing a specified volume of liquid was used to measure aril volume. The average geometrical diameters of sweet and sour pomegranate arils were separately found out through a determination of the volume of 50 arils using toluene-displacement method (the test was replicated 3 times). The volume of each aril was figured out by dividing the volume of the displaced fluid by the number of arils. The radius of a pomegranate aril was calculated using the following equation (Mohsenin, 1986):

\[
v = \frac{4}{3} \pi r_0^3
\]

where v, volume of each aril (m\(^3\)), r_0, radius of pomegranate aril (m). The radiiuses of the sweet and sour pomegranate arils were determined to be 4.93 and 4.11 mm, respectively.

Fick’s second law for unstable conditions for spherical shapes used by Crank (1975) as follows can describe moisture transfer.
Microwave and Vacuum Drying

... during the declining stage of the drying process.

\[MR = \frac{M_i - M_e}{M_i - M_c} = \frac{6}{\pi^2 \sigma} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\pi^2 \frac{D_{eff} t}{r_0^2}\right) \]

(8)

Here \(MR \) is moisture ratio (dimensionless), \(M_i \) the moisture content at any time, \(M_c \) stands for equilibrium moisture content (kg water kg\(^{-1}\) solids), \(M_0 \) is the initial moisture content, \(n \) the number of terms considered in the equation, \(t \) is the drying time (min), \(D_{eff} \) represents the effective diffusion coefficient (m\(^2\) s\(^{-1}\)) and finally \(r_0 \) is the sphere radius (m) which has been assumed constant during the drying process. For the cases of long drying periods the mentioned equation may be written as:

\[MR = \frac{6}{\pi^2} \exp\left(-\pi^2 \frac{D_{eff} t}{r_0^2}\right) \]

(9)

Equation 9 is used for a determination of effective diffusion coefficient (Pahlavanzadeh et al., 2001; Doymaz, 2005; Babalis and Belessiotis, 2004; Aghabashloo et al., 2008). In this process the aril radius is assumed as constant. Equation (9) can be written in the following form:

\[\ln(MR) = \ln\left(\frac{6}{\pi^2}\right) - \left(\pi^2 \frac{D_{eff} t}{r_0^2}\right) \]

(10)

Plotting the natural logarithm of data versus time would result in a line with slope \(k_1 \). \(D_{eff} \) can then be calculated as:

\[k_1 = \frac{\pi^2 D_{eff}}{r_0^2} \]

(11)

Activation Energy in Vacuum Oven

Activation energy can be calculated using Arehinus equation as follows:

\[D_{eff} = D_0 \exp\left(-\frac{E_a}{RT_{abs}}\right) \]

(12)

where \(E_a \) is activation energy, \(R_g \) the universal gas constant (8.3143 kJ mol\(^{-1}\)), \(T_{abs} \) stands for drier temperature (in Kelvins) and \(D_0 \) is a constant, read as the ordinate. Taking the natural logarithm in Equation (12) would lead to:

\[\ln D_{eff} = \ln D_0 - \frac{E_a}{R_g T_{abs}} \]

(13)

Plotting \(\ln(D_{eff}) \) versus \((1/T_{abs}) \) yields a straight line with a slope of \(k_2 \). The coefficient \(k_2 \) can be calculated as follows:

\[k_2 = \frac{E_a}{R_g} \]

(14)

Activation Energy in Microwave Oven

Inasmuch as temperature is not precisely measurable inside the microwave drier, the activation energy is found as modified from the revised Arehnious equation. In a first method it is assumed as related to drying kinetic constant rate \((k) \) and the ratio of microwave output power to sample weight \((m/p) \) instead of to air temperature. Then Equation (15) can be effectively used (Dadali et al., 2007; ozbek and dadali, 2007) as follows:

\[K = K_0 \exp\left(-\frac{E_a m}{P}\right) \]

(15)

where \(K \) is the constant rate of drying calculated from Page equation (min\(^{-1}\)), \(K_0 \) is pre-exponential constant (min\(^{-1}\)), \(E_a \) is activation energy (W g\(^{-1}\)), \(P \) stands for microwave output power (W) and finally \(m \) for sample weight (g). As for a second method, the correlation between effective diffusion coefficient and \((m/p) \) is taken into account for the calculation of activation energy (ozbek and dadali, 2007).

\[D_{eff} = D_0 \exp\left(-\frac{E_a m}{P}\right) \]

(16)

where \(P \) is the microwave output power (W), \(m \) the weight of raw sample (g), \(D_{eff} \) is the effective moisture diffusivity (m\(^2\) s\(^{-1}\)), \(D_0 \) standing for pre-exponential constant (m\(^2\) s\(^{-1}\)) and \(E_a \) representing the activation energy (W g\(^{-1}\)). \(E_a \) can be found out by means of curves, Dadali model and multiple regression analysis through MATLAB software. This may be accomplished using one of several methods as follows.
\[\ln(D_{\text{eff}}) = \ln(D_0) - \frac{E_a}{p} \frac{m}{l} \]
(17)

Following plotting of \(\ln D_{\text{eff}} \) versus \(1/P \), \(K_2 \) is calculated for the microwave as follows:

\[K_2 = \frac{E_a}{p} \]
(18)

RESULTS AND DISCUSSION

Drying times versus temperature in constant vacuum and for sour and as well for sweet pomegranate arils are presented in Figure 2. At 50°C it is the sweet pomegranate that takes a much longer time to dry than the sour variety. A sharp decrease in drying time in both varieties is observed as temperature is increased from 50 to 60°C. Further increase in temperature results in a much more gradual decrease in drying time with the two curves closely approaching each other. This kind of behavior has been reported for vegetables as well (Lee and Kim, 2009; Valo-Pinedo and Xidieh Murr, 2007).

![Figure 2. Drying time versus vacuum drying temperature.](image)

The curves plotting drying time versus microwave power, for sour and sweet pomegranates, are depicted in Figure 3. The two curves exhibit quite similar behaviors. Drying times at 200 and 300W of applied power are not much different, whilst the time is almost 4.5 times as much when the power is at 100W. This behavior has been reported by Ozbek and Dadali (2007). Microwave drying assists in removing moisture from food products any the problem of case hardening and it helps to reduce the drying time (Prabhanjan et al., 1995). Microwave power applications higher than 300W were tested, however, due to burning of samples, further testing was discontinued.

Moisture diffusion and drying rate phenomena are dependent upon temperature and on product composition (Rizvi, 1986). Since the initial constituents and moisture content of sweet and sour pomegranate arils differ, moisture diffusion and drying time of the two differ as well.

![Figure 3. Effect of microwave power on pomegranate aril drying time.](image)

Figure 4(a-b) show the drying trends in sour and sweet pomegranates in the vacuum drier along with the predicted lines as described by Midili model. Aril moisture content sharply decreased with increasing temperature. In

![Figure 4. Moisture Ratio data for sweet (a) and sour (b) pomegranate arils at various temperatures in the vacuum drier along with the curves predicted by the Page model.](image)
other words, at higher temperatures, higher levels of heat and mass transfer occur, resulting in a faster trend of drying (Lee and Kim, 2009; Valo-Pinedo and Xidieh Murr, 2007). This trend has been reported in convection drying for many such fruits and vegetables as apricot (Togrul and Pehlivan, 2003), eggplant (Ertekin and Yaldiz, 2004; Wu et al., 2007), olive cake (Akgun and Doymaz, 2005), apple pomace (Wang et al., 2007), pumpkin slices (Doymaz, 2007), as well as for onion slices (Jain and Pathare, 2004; Kumar et al., 2006; Sarsavadia et al., 1999; Sharma et al., 2005).

Regarding the mentioned curves, drying rate or the rate of moisture loss decreases during drying, similar to the results obtained for hot air drying of other products.

Drying trend of pomegranates in microwave drier as well as the predicted curves described through the Page model are presented in Figure 5 (a-b). It can be noted that moisture ratio has decreased rapidly with increase microwave power (Drouzas and Schubert, 1996; Funebo and Ohlsson, 1998; Prabhanjan et al., 1995; Soysal, 2004). Increased microwave power results in a rapid decline in moisture ratio. Drier oven chamber temperature along with the intensity of microwaves increase with increase in microwave power and as a result, moisture is more intensively lost at higher power rates (Gowen et al., 2008; Alibas Ozkan et al., 2007).

As observed from Figure 5 (a-b) and, similar to the results obtained from hot air drying, drying rate decreases with progress in drying time. Drying time of sweet pomegranate arils in the 100W treatment case was 4.6 times that at 300W, while for sour pomegranates the drying time at 100W of energy was about 5.25 times that at 300W.

At the initial stages of drying, the initial moisture content of the fruit is high and therefore the drying rate is also high, but it decreases as the drying progresses. The product loses a major part of its water during the first stages of drying and it takes longer for the remaining moisture to be dissipated.

Multiple regression analysis was performed using MATLAB software. The most suitable model for describing the drying kinetics of pomegranate arils was selected as based on the highest R^2 and the lowest X^2 and RMSE values. A comparison of R^2, X^2 as well as RMSE values (Table 2) revealed that Midili and Page models were the most fitting models in vacuum and microwave drying for a prediction of the thin layer drying trend of pomegranate arils.

Figure 5 (a-b) reflect the relationship between the Page model constants and hot air temperature of the vacuum drier chamber, for sour and sweet pomegranates, respectively. The equations and corresponding R^2, X^2, as well as RMSE values are presented below the tables.

Relationships between page model constants and microwave output power are given in Table 3 for sour and sweet pomegranates, respectively. Also Relationships between page model constants and microwave output power are given in Table 4 for sour and sweet pomegranates respectively.
Table 2. Statistical data obtained from various thin-layer drying models in vacuum dryer sweet, sour pomegranate and microwave dryer sweet, sour pomegranate.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number</th>
<th>R²</th>
<th>RMSE X²</th>
<th>R²</th>
<th>RMSE X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum dryer sweet pomegranate</td>
<td>1</td>
<td>0.9816</td>
<td>0.0458</td>
<td>0.00323</td>
<td>2</td>
</tr>
<tr>
<td>vacuum dryer sour pomegranate</td>
<td>1</td>
<td>0.9912</td>
<td>0.0299</td>
<td>0.00106</td>
<td>2</td>
</tr>
<tr>
<td>Microwave dryer sweet pomegranate</td>
<td>1</td>
<td>0.9689</td>
<td>0.0572</td>
<td>0.00031</td>
<td>2</td>
</tr>
<tr>
<td>Microwave dryer sour pomegranate</td>
<td>1</td>
<td>0.9800</td>
<td>0.0467</td>
<td>0.0060</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3. Relationship between the Page model constants and hot air temperature in the vacuum dryer sweet and sour pomegranate arils.

Vacuum dryer sweet pomegranate

\[
k = e^{-(0.078T)}
\]

\[
n = 0.167T
\]

\[
MR(T) = \exp\left(-e^{-(0.078T)} \times t^{(0.0167)}\right)
\]

\[
R^2 = 0.8924
\]

\[
RMSE = 0.0749
\]

\[
\chi^2 = 0.00217
\]

Vacuum dryer sour pomegranate

\[
k = e^{-(0.0857T)}
\]

\[
n = 0.1752T
\]

\[
MR(T) = \exp\left(-e^{-(0.0857T)} \times t^{(0.01752T)}\right)
\]

\[
R^2 = 0.9183
\]

\[
RMSE = 0.0571
\]

\[
\chi^2 = 0.00162
\]

Table 4. Relationship between the Page model constants and microwave operating power for sour and sweet pomegranate arils.

Sour pomegranate

\[
K = 0.0000762P
\]

\[
R^2 = 0.94
\]

\[
n = 0.0057P
\]

\[
R^2 = 0.81
\]

\[
MR(P) = \exp((-0.0000762P) \times t^{(0.00057P)})
\]

\[
R^2 = 0.8681
\]

\[
RMSE = 0.0913
\]

\[
\chi^2 = 0.00463
\]

Sweet pomegranate

\[
K = 0.0000843P
\]

\[
R^2 = 0.94
\]

\[
n = 0.005424
\]

\[
R^2 = 0.83
\]

\[
MR(P) = \exp((-0.0000843P) \times t^{(0.00542P)})
\]

\[
R^2 = 0.8891
\]

\[
RMSE = 0.0725
\]

\[
\chi^2 = 0.00295
\]
Drying Rate

During the early stages, drying rate increases rapidly, reaching a maximum value, then starts to decrease with progress in drying time. A similar trend has been reported by many such researchers as Ertekin and Yaldiz (2004); Wang et al. (2007); Celma, et al. (2007); Babalis and Belessiotis (2004), Kaya et al. (2007).

Drying curves in Figure 6 (a-b) show higher drying rates occurring at higher temperatures.

Drying curves shown in Figure 7 (a-b) follow the general expected pattern, however, drying rate in the microwave drier is somewhat more irregular than that in the vacuum drier. As can be observed, drying rate increases with increasing microwave power. The highest drying rate is obtained at 300W, similar for both types of pomegranates. Therefore, microwave operational power has an important effect on drying rate (Alibas Ozkan et al., 2007; Gowen et al., 2008; Karaaslan and Tuncer, 2008; Cheng et al., 2006).

Drying was continued until no difference was observed between successive weighings. Moisture Ratio was calculated using Equation (1). Figure 8 (a-b) show plots of ln(MR) versus time in vacuum drying at various temperatures for sour and sweet pomegranates, respectively. Value of D_{eff} is calculated from Equation (7) and is reported for sweet and sour pomegranates in Table 5. The lowest moisture diffusion value for sweet pomegranate arils in vacuum drying and at 50ºC was found to be 10^{-10} the highest diffusion of moisture for sour pomegranate arils at 90ºC was estimated as 5.25×10^{-10}. In microwave drying and at a 100W rate of power, the lowest moisture diffusion value was obtained for sour samples as 3.43×10^{-10} whilst the highest value obtained for the sweet sample namely 3.05×10^{-10}. These observations are in match with those found drying pumpkins (1.13×10^{-9}).
Table 5. D_{eff} estimation and statistical analysis using the linear model at various temperatures in the vacuum drier for sweet and sour pomegranate.

<table>
<thead>
<tr>
<th>Variables</th>
<th>sweet pomegranate</th>
<th>sour pomegranate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>$D_{eff} \times 10^{10}$ (m2 s$^{-1}$)</td>
<td>0.74</td>
<td>2.4651</td>
</tr>
<tr>
<td>R^2</td>
<td>0.94</td>
<td>0.98</td>
</tr>
</tbody>
</table>

According to Rizvi (1986) moisture diffusion is dependent upon temperature and the product’s structural composition. Considering the proportional to similarity of drying temperature in vacuum drier and the operational power of microwave drier, it can be concluded that the only factor affecting the moisture diffusion difference between the two varieties of pomegranate is their structural composition. Figure 8(a-b) imply that, in the vacuum drier, as temperature increases, slopes of the lines increase indicating that moisture diffusion increases with temperature. Also from Figure 9(a-b) it can be concluded that by increasing microwave power, the slope of the lines increases. In other words, moisture diffusion increases with microwave power. Effective diffusion coefficient data for sweet and sour pomegranates dried in vacuum and microwave driers are presented in Tables 5 and 6.

Activation Energy in Vacuum Drier

Activation energy is calculated from the slope of the curve $\ln(D_{eff})$ curve versus $(1/T)$ (Figure 10). The activation energy of sweet...
Table 6. \(D_{\text{eff}}\) estimation and statistical analysis using the linear model at various temperatures in the microwave drier for sweet and sour pomegranate.

<table>
<thead>
<tr>
<th>Variables</th>
<th>sweet pomegranate</th>
<th>sour pomegranate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (W)</td>
<td>100 200 300</td>
<td>100 200 300</td>
</tr>
<tr>
<td>(D_{\text{eff}}\times10^{10}(\text{m}^2\text{s}^{-1}))</td>
<td>7.29 29.58 32.05</td>
<td>3.43 25.76 29.19</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.95 0.93 0.93</td>
<td>0.91 0.89 0.90</td>
</tr>
</tbody>
</table>

and sour pomegranate arils in vacuum drying method was found out as 52.275 and 52.859 (kJ mol\(^{-1}\)) respectively (Table 7), which are also acceptable for such agricultural products as okra 51.26 kJ mol\(^{-1}\), (Gogus and Maskan, 1999) and green peppers 51.4 kJ mol\(^{-1}\), (Kaymak-Ertekin, 2002).

Activation Energy in Microwave Drying

Activation energy and \(D_0\) can be calculated from the \((K-m/p)\) curve (Figure 11) and equation 13. Based on statistical analysis and Page model coefficients, it is noted that constant drying rate \((K)\) increases with increasing air temperature in vacuum drying and increasing microwave power in microwave made of drying. Activation energy figures for sweet and sour pomegranate arils were recorded as 16.675 and 24.222 (W g\(^{-1}\)) respectively. In other words, activation energy for sour pomegranate is 31.17 higher than that for sweet pomegranate. A similar trend has been reported by Ozbek and Dadali for mint leaves (2007).

Another method for calculation of activation energy, is the calculation of the coefficients for Equation (14) from \((D_{\text{eff}})\) versus \((m/p)\) curve (Figure 12), which would yield activation energy value of 16.945 (W g\(^{-1}\)) and 23.563(W g\(^{-1}\)) for sweet and sour pomegranates, respectively (Ozbek and Dadali, 2007).

The third method for calculation of activation energy is dividing the slope of \([\ln(D_{\text{eff}})]- m/p\) curve by the sample weight (Figure 13). The activation energy calculated using this method was found to be 17.220 (W g\(^{-1}\)) for sweet and 23.831(W g\(^{-1}\)) for sour pomegranate.

COCLUSIONS

Drying behavior of thin layers of sweet and sour pomegranate arils was investigated in a vacuum drier at five temperature levels (50, 60, 70, 80, 90°C) and in a microwave
drier at three operating power levels (100, 200, 300W). The air temperature and vacuum level in the vacuum drier and microwave operating power in the microwave drier were factors affecting the drying time of pomegranate arils as well as constants in Page model.

Regarding goodness of fit indices (R^2, X^2, RMSE), Midili model (in vacuum drying) and Page model (in microwave drying) provided the best fit for the data. The entire process of dry becoming of the pomegranate arils occurred in the falling rate period.

Drying rate of pomegranate arils, in the vacuum drier, is affected by temperature and the initial moisture content, while in the microwave drier, the operative power and aril initial moisture content constitute the effective factors. Increasing the temperature in the vacuum drier and the power in the microwave drier results in increase in drying rate.

By increasing the vacuum drier temperature from 50 to 90°C, moisture diffusion for both sour and sweet varieties of pomegranate increased. The lowest moisture diffusion was obtained as $7.4 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$ whilst its maximum value being $52.5 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$. This trend was also observed when increasing the power in the microwave drier, its minimum value being $3.43 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$ vs. a maximum of $32.05 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$. Values of activation energy for sour and sweet pomegranate arils were almost similar in the case of vacuum drying, whilst they were recorded as higher for sour pomegranate in the case microwave drying.

Nomenclature

- T_{abs}: Absolute air temperature (K)
- χ: Chi-square
- D_0: Constant
- R^2: Correlation coefficient
- K: Drying kinetic constant rate (Min$^{-1}$)
- D_{eff}: Effective diffusion coefficient (m2 s$^{-1}$)
- E_a: Energy of activation (KJ mol$^{-1}$)
- M_e: Equilibrium moisture content (kg water kg$^{-1}$ solids)
- M_0: Initial moisture content (kg water kg$^{-1}$ solids)
- $MR_{exp,i}$: ith moisture ratio value experimentally determined
- $MR_{pre,i}$: ith predicted moisture ratio value
- P: Microwave power (W)
- M_t: Moisture content at any time (kg water kg$^{-1}$ solids)
- M_{t+dt}: Moisture content at time $t+dt$ (kg water kg$^{-1}$ dry matter)
- M_{t}: Moisture content at time t (kg water kg$^{-1}$ dry matter)
- MR: Moisture ratio (dimensionless)
- n: Number of drying constants
- N: Number of observations
- K_0: Pre-exponential constant (Min$^{-1}$)
- r_0: Radius of pomegranate aril (m).
- $RMSE$: Root mean square error
- m: Sample weight (g)
- K_1, K_2: Slope of straight line
- t: Time (Min)
- R_g: Universal gas constant (8.3143 kJ mol$^{-1}$)
- v: Volume (m3)
REFERENCES

