Allelic Polymorphism of Makoei Sheep Calpastatin Gene Identified by Polymerase Chain Reaction and Single Strand Conformation Polymorphism

M. Ranjbari¹, A. Hashemi², K. Mardani³*, and R. Darvishzadeh⁴

ABSTRACT

Calpastatin (CAST) is a specific inhibitor of calpains, playing a role in meat tenderization and myogenesis. In the present study, the polymorphism of the CAST gene of Makoei sheep was investigated by polymerase chain reaction and single strand conformation polymorphism technique (PCR–SSCP). Genomic DNA was extracted from whole blood samples collected from 100 sheep. A 622 bp CAST exon 1 segment was amplified by standard PCR, using the locus specific primers. PCR products were subjected to a non-denaturing gel electrophoresis. Four SSCP patterns, representing four different genotypes, were identified. The frequencies of the observed genotypes were 0.31, 0.04, 0.63 and 0.02 for AA, BB, AB and AC, respectively. Allele frequencies were 0.6313, 0.3586 and 0.01 for A, B and C, respectively. The Observed heterozygosity (Hobs) value for CAST gene was 0.4728. The chi-square test showed significant (P<0.01) deviation from Hardy-Weinberg equilibrium for this locus in Makoei sheep population.

Keywords: CAST gene, Makoei sheep, PCR, SSCP.

INTRODUCTION

The improvement in meat quality is the main goal of livestock production. Meat tenderness is one of the most important factors for quality assessment of the meat. The calpain proteolytic system has been identified as a factor for postmortem meat tenderization process through the proteolysis of myofibrillar and associated proteins (Koohmaraie, 1992; Taylor et al., 1995). Variation in meat tenderness is due to the genetic variation, biological and physiological differences during slaughter, and chemical differences during post-mortem aging (Koohmaraie 1996).

Calpastatin (CAST) gene located on the fifth chromosome of sheep encodes a specific calpain inhibitor that plays important roles in the formation of muscle, degradation, and meat tenderness after slaughter (Gabor et al., 2009; Palmer et al., 1999). Polymorphisms in the bovine (Casas et al., 2006; Schenkel et al., 2006) and pigs (Ciobanu et al., 2004) CAST gene have been associated with meat tenderness, making the CAST gene an excellent candidate for controlling meat traits in livestock.

¹ Institute for Biotechnology, Department of Cellular and Molecular Biology, Urmia University, Urmia, Islamic Republic of Iran.
² Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, West Azerbaijan, Islamic Republic of Iran.
³ Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Islamic Republic of Iran.
* Corresponding author; e-mail: kmardani@yahoo.com
⁴ Department of Plant Breeding, Faculty of Agriculture, Urmia University, Urmia, Islamic Republic of Iran.
Genetic polymorphism identification of the CAST gene and its relation to the meat quality could be used as a tool to predict meat tenderness in animals allowing breeders to enhance the trait (Seiler, 1994). In addition, genotyping animals by employing this molecular marker will help to classify carcasses based on eating quality before slaughter (Lonergan et al., 1995). It was demonstrated that the favorable effect of the variants of CAST gene on pig carcass quality traits depends on the cut. It was also reported that post-mortem changes in different periods depends on the CAST/RsaI genotype. It seems that the BB genotype is related to the rate of glycolysis immediately after slaughter while the AA genotype is related to the rate of glycogenolysis in the process of muscles conversion into meat (Krzecio et al., 2008).

Palmer et al. (1998) have described two allelic systems of polymorphic variants (M and N) in a region of the bovine CAST by the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method. Using a molecular genetics approach to study meat quality in sheep, Palmer et al. (1999) chose the ovine CAST gene as a candidate gene for meat quality. A three allelic system of polymorphic variants (a, b, and c) have also been described by PCR and single strand conformation polymorphism (PCR-SSCP) in a region of the ovine and cattle CAST (Chung et al., 1999; Palmer et al., 2000).

The present study aimed to evaluate the genotype and gene frequencies at the ovine CAST gene of “Makoei” sheep breed in west Azerbaijan Breeding Station, Iran.

MATERIALS AND METHODS

Sheep Blood Sample Collection and Genomic DNA Extraction

Makoei sheep examined in this study were fat-tailed sheep with medium body size and white color with black spots on face and feet. They are raised in East and West Azerbaijan Provinces of Iran and their main products are meat and wool (Saadat-Noori and Siah-Mansoor, 1992). Blood samples (approximately 2-3 ml) were obtained from 100 unrelated Makoei sheep from different parts of West Azerbaijan province and stored in EDTA-coated tubes. Genomic DNA was extracted from 0.3 ml of blood using the genomic DNA purification kit (Fermentas, EU) according to manufacturer’s instructions. Quality and quantity of extracted DNA was measured by agarose gel (0.8 %) electrophoresis.

Amplification of the Exon 1 of CAST Gene

The DNA amplification of the CAST gene was achieved by PCR. Two primers exon 1C (5’-TGGGCCCATAAGCCATCGATG-3’) and exon 1D (5’-GGTGGAGCAGCATTCTGATCACC-3’) targeting a fragment of 622 bp was employed as described by Palmer et al. (1998). The PCRs were carried out in 50 µl volumes using PCR mastermix kit (Cinnagen, Iran) containing 2.5 units Taq DNA Polymerase in reaction buffer, 4 mM MgCl₂, 50 µM each of dATP, dCTP, dGTP and dTTP, 0.5 µM of each primer and about 100 ng of extracted DNA as template. Amplification was performed in Mastercycler (Eppendorf, Germany) using 35 cycles of incubation at 95°C for 45 seconds, 62°C for 1 minute, and 72°C for 75 seconds, with a final extension at 72°C for 7 minutes.

Single Strand Confirmation Polymorphism (SSCP)

PCR products were mixed with 8 µl of denaturing loading dye [95% (w/v) deionized formamide, 0.05% (w/v) xylene cyanol, 0.05% (w/v) bromophenol blue and 0.02 M EDTA] in a total volume of 15 µl. The mixture was denatured at 95°C for 5 minutes and was snap chilled on ice (Pipalia...
The total volume was applied in a 15% polyacrylamide gel, as described by Herring et al. (1982). The electrophoresis was performed in 0.5 X TBE buffer (Tris 100 mM, Boric Acid 9 mM, EDTA 1 mM) at room temperature (18°C) and constant 200 V for 3 hours. Polyacrylamide gels were stained with silver nitrate according to the protocol described by Herring et al. (1982).

Statistical Analysis

The allelic and genotypic frequencies, expected means, observed and expected Nei’s heterozygosities (HE=1-Σ P_i^2, where P_i is the frequency of allele i) and Hardy-Weinberg equilibrium were calculated using PopGene32 program, ver 1.31, Canada (Yeh et al., 1997).

RESULTS

PCR-SSCP Analysis of CAST Gene

The amplification of a 622 bp fragment of the CAST exon 1 gene was successful in our first attempt. All extracted DNAs from sheep blood samples yielded a specific single band PCR product without any nonspecific band. Therefore, the PCR products were directly used for SSCP analysis.

The allelic variation in the CAST gene was examined by PCR-SSCP. The non-denaturing gel electrophoresis enabled visualization of ssDNA and analyzed for SSCP band patterns. In this study a total of four SSCP patterns were observed in the examined sheep (Figure 1). The frequencies of the observed genotypes were 0.31, 0.04, 0.63 and 0.02 for AA, BB, AB and AC, respectively. Allele frequencies were 0.63, 0.36 and 0.01 for A, B and C respectively (Table 1).

Statistically estimated parameters for CAST locus in Makoei sheep have been presented in Table 2. The chi-square test showed significant (P< 0.01) deviation from Hardy-Weinberg equilibrium for this locus in the studied population.

DISCUSSION

In the present study, three alleles (A, B, and C) and four genotypes (AA, AB, BB, and AC) were observed for CAST gene in "Makoei" sheep breed in West Azerbaijan, Iran. The most frequent allele and genotype in the "Makoei" sheep breed were 63.13% and 31% for allele A and genotype AB, respectively. The results obtained from this study revealed the polymorphism in the

![Figure 1](https://jast.modares.ac.ir/y/y.2019/1.159/IRST/606-06/061.png)

Figure 1. SSCP polymorphism of Makoei sheep CAST gene. Four different PCR-SSCP patterns (genotype) were identified.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AA</th>
<th>BB</th>
<th>AB</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6313</td>
<td>0.3586</td>
<td>0.0101</td>
<td>0.31</td>
<td>0.04</td>
<td>0.63</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 1. Observed allele and genotypic frequencies for CAST locus in Makoei sheep.
Table 2. Statistically estimated parameters for CAST locus in Makoei sheep.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4752</td>
<td>0.5248</td>
<td>0.4728</td>
<td>0.4728</td>
<td>0.3434</td>
<td>0.6566</td>
</tr>
</tbody>
</table>

CAST gene of Makoie sheep. Variation in non-coding and coding regions of the ovine CAST gene has been reported by several researchers (Palmer et al., 1998; Palmer et al., 2000; Roberts et al., 1996; Zhou et al., 2007).

Polymorphism study on the same region of the CAST gene in Kurdi sheep by PCR-SSCP revealed three genotypes including aa, ab and ac (Nassiry et al., 2006). The polymorphism in the exon 1 of the CAST in sheep was also reported by other researchers using PCR-RFLP technique (Gabor et al., 2009; Mohammadi et al., 2008; Palmer et al., 1998). In goats and bovine the exon 6 of CAST gene were investigated for polymorphisms and a number of allelic variants were identified in these species (Zhou and Hickford, 2008; Zhou et al., 2007). Two allelic systems of polymorphic variants (M and N) in the region of ovine CAST locus have been described by PCR-RFLP method (Palmer et al., 1998; Shahroodi et al., 2005). According to Palmer et al. (1998), allelic frequencies were 77% and 12% for the M and N in Corriedale sheep, respectively.

The present study was the first attempt for identification of CAST gene variation in Iranian Makoei sheep. Further studies are required to investigate the relationship between CAST gene polymorphisms and the performance traits in Makoei sheep.

ACKNOWLEDGEMENTS

Authors sincerely thank Dean of Research of Urmia University for funding this project. They also thank Mr. A. Mahdavi Mamagani and Mr. F. Farhanghpajoh for their technical assistance.

REFERENCES

Postmortem Tenderization? Z-disk Degradation Responsible for

شناسایی چندشکلی های زن کالپاستاتین در گوسفندها با استفاده از تکنیک
PCR-SSCP

م. رنجبري، ا. هاشمي، ک. مردانی، ر. دروشی زاده

چکیده

کالپاستاتین (CAST) یک مهارکننده اختصاصی کالپین‌ها می‌باشد که در روده و ساختن سلول‌های عضلانی نقش دارد. در مطالعه حاضر چند شکلی در گوسفندها نزد مانکی‌ها با استفاده از PCR-SSCP تکنیک، مورد ارزیابی قرار گرفت. رأس گوسفندهزایی به دست آمده، ۲۲ جفت یک یا دو جفت یک ناحیه آگزون یک با بکارگیری آغازگرهای اختصاصی لوکوس PCR-SSCP نتایج به دست آمده، با استفاده از روش CAST تکثیر شد. بر روی زل غیر دانشجویی که به کارگیری CAST گوسفنده در مطالعه کمک می‌کند که مربوط به چهار CAST زنی، متفاوت با یکدیگر است. این گوسفندهها قبلاً مورد بررسی قرار گرفته و این نتایج با ترکیب درست برخورد نمی‌شود. به عنوان مثال، فراوانی زوئین‌های شده شده AA در CAST نزدیک به ۰/۴ درصد است. A باید با ترکیب فراوانی زوئین‌های A و B در مقدار ۰/۶۳۸۴ درصد، شده جهت محاسبه مقدار CAST در گوسفنده گوسفنده‌ها در نظر گرفته شده‌اند.

