Comparative Life Table of Mustard Aphid, *Lipaphis erysimi* (Kaltenbach) (Hemiptera: Aphididae) on Canola Cultivars

R. Taghizadeh

ABSTRACT

Life table parameters of *Lipaphis erysimi* (Kaltenbach) (Hemiptera: Aphididae) were determined on four canola (*Brassica napus* L.) cultivars (Nathalie, Neptune, Danube, and Okapi) at 25±1 °C, 60±5% RH, and 16L:8D hours photoperiods. Data were analyzed using the female age-specific life table. There were significant differences in duration of nymphal developmental time and fecundity of aphid on the experimental canola cultivars. The shortest (7.13±0.07 day) and longest (8.91±0.15 day) nymphal developmental time were on Nathalie and Okapi, respectively. The *r*$_m$ value of *L. erysimi* ranged between 0.30 on Nathalie and 0.21 day$^{-1}$ on Okapi. The highest values of *r*$_m$ (0.30±0.00 day$^{-1}$), *R*$_0$ (30.62±1.35 offspring), finite rate of increase (1.35±0.01 day$^{-1}$), and the lowest mean generation time (11.54±0.12 days) and *DT* (2.34±0.03 days) were recorded on Nathalie. Shorter nymphal developmental time, longer adult longevity as well as greater intrinsic rate of increase, net reproductive rates, finite rate of increase, fecundity and survivorship revealed that this pest performed well on Nathalie, Neptune and Danube cultivars. Consequently, the results indicated that canola cultivars had significant effect on life table parameters of *L. erysimi* and the Nathalie, Neptune, and Danube cultivars were suitable hosts for population growth of the pest.

Keywords: Age-specific life table, Nymphal development, cv. Nathalie, cv. Danube, cv. Neptune

INTRODUCTION

Canola (*Brassica napus* L.) is an important economic crop in Iran. Insect pests pose a great challenge to *Brassica* crop production worldwide. The mustard aphid, *Lipaphis erysimi* (Kaltenbach) (Hemiptera: Aphididae) is one of the most severe pests of cruciferous crops worldwide (Prasad and Phadke, 1982; Begum, 1995; Liu et al., 1997), causing damage of 10-90% depending upon the severity of the infestation and plant stage (Rana, 2005). This pest causes damage to canola plants at vegetative, flowering, and pod formation stages (Goggin, 2007). Chemical pesticides application causes various undesirable effects including toxic effects on non-target species, secondary pest outbreak, residual effects on the food chain, and problems of residue hazard to human, animals and environment (Singh and Singh, 2013). Therefore, effects of alternative control measures, such as biological control (Shukla et al., 1990; Singh, 2013; Fallahpour et al., 2015), host plant resistance (Yue and Liu, 2000; Mamun et al., 2010; Roudposhti et al., 2012; Fallahpour et al., 2015) or an integration of these methods need to be evaluated.

Host plant resistance can be a valuable component of an IPM system that is compatible with other control measures such as chemical control (Fathipour and Maleknia, 2016). Furthermore, plant resistance can be created by antixenosis, antibiosis, tolerance, or some combinations of these mechanisms (Painter, 1951, Kogan

1 Shahid bakeri high Education Center of Miandoab, Urmia University, Urmia, Islamic Republic of Iran.

*Corresponding author; e-mail: r.taghizadeh@urmia.ac.ir
and Ortman, 1978). Among these mechanisms, antibiosis is the most important, which has a direct influence on the demographic parameters of a pest such as fecundity, mortality and development time (Sedaratian et al., 2011). Host quality depends on differences among the cultivars of a plant, including differences in morphological traits, nutrient contents, and the concentration of secondary metabolites (Levin, 1973). It is now well recognized that host plant quality can affect several life history characteristics of their herbivores by impairing growth, lowering resistance to disease, and reducing fecundity (Price et al. 1980).

Life table studies facilitate the understanding of insect population dynamics (Wittmeyer and Coudron, 2001) and provide information about survival, development, and reproduction (Taghizadeh et al., 2012, Karimi-Malati et al., 2014, Nikooei et al., 2015). Various studies have evaluated the effect of different Brassica cultivars on demographic parameters of Plutella xylostella (L.) (Ebrahimi et al., 2008, Fathi et al., 2011a, Akandeh et al., 2016, Nikooei et al., 2015), Chromatomya horticola Gourea (Fathi, 2010), Myzus persicae (Fathi et al., 2010), Thrips tabaci (Fathi et al., 2011b), Brevicoryne brassicae L. (Ulusoy and Olmez Bayhan, 2006; Mirmohammadi et al., 2009). Furthermore, effects of various canola cultivars on some biological parameters of Lipaphis erysimi were previously studied (Rana, 2005; Choudhury and Pal, 2009; Roudposhti et al., 2012), and few researchers have focused on demographic parameters of this pest and its predators on canola cultivars at different nitrogen fertilization treatments (Fallahpour et al., 2015). No published information concerning life table parameters of this pest on different populations of canola (Brassica napus L.) is available.

The aim of our study was to determine the female age-specific life table and biological parameters of L. erysimi on four canola cultivars, and find out if those cultivars were suitable host plants for growth and reproduction of the pest.

MATERIALS AND METHODS

Plants

Seeds of four most-planted winter cultivars of canola (Nathalie, Neptune, Danube, and Okapi) were obtained from Agricultural and Natural Resource Research Center, Miandoab, Iran. Seeds were planted in 20 cm diameter plastic pots filled with appropriate field soil in a greenhouse located in Miandoab University campus, northwest Iran. There were 10 pots for each cultivar in a completely randomized design and 15 seeds were sown in each pot. All cultivars were grown under greenhouse conditions at 25 ± 1 °C, 65 ± 5% RH, and 16L:8D hours photoperiods, without any fertilizer and pesticides. Two seedlings (3-4 leaf stage) were kept in each pot after thinning. Plants were 4 wk old when they were used in the experiments.

Insects

Lipaphis erysimi populations were collected from canola fields in West Azerbaijan Province, Iran, during May 2016. Aphid colonies were established on ‘Nathalie’ in the above-mentioned conditions. The pots were maintained in greenhouse to get a large population of aphids for experiments. Plants were confined inside a cylindrical transparent cage (30 cm diameter × 60 cm height), top of which was covered with fine mesh cloth to prevent escape.

Demographic Parameters

Life table parameters of L. erysimi were assessed at 25±1 °C, 65±5% RH, and 16L:8D h. photoperiods. One apterous aphid was put on each leaf by fine paintbrush and was confined with a clip cage. Sixty aphids
were used as a replicate for each cultivar per treatment. After 24 h, leaves were checked and all aphids except one newborn nymph were removed. Clip cages were observed daily and number of aphid progeny was recorded. Counting and observation were continued until the death of all aphids. The development, survival, and fecundity of aphids were recorded daily. The data were analyzed using the female age-specific life table (Carey, 1993). In this way, it is necessary to calculate the age-specific survival rate \((l_x)\) and the age-specific fecundity \((m_x)\) based on female individuals, where \(l_x\) is the probability that a newborn individual will survive to age \(x\), and \(m_x\) is the mean number of female progeny per female adult at age \(x\). Life table parameters were calculated as follow:

\[R_0 = \sum l_x m_x, \quad T = \frac{\ln R_0}{r}, \quad DT = \frac{\ln 2}{r} \]

Net reproductive rate \((R_0)\), intrinsic rate of natural increase \((r_m)\), finite rate of increase \((\lambda)\), mean generation time \((T)\), and doubling time \((DT)\).

Statistical Analysis

Statistical analysis was done using SPSS 19.0 software. Normality of the data was tested by Kolmogorov-Smirnov (Kolmogorov, 1933; Smirnov, 1933) method. One-way analysis of variance with Tukey’s test \((P<0.05)\) was used to determine differences between means. Differences in \(R_0, r_m, \lambda, T,\) and \(DT\) values were tested for significance by estimating variances through the jackknife procedure (Meyer et al., 1986; Maia et al., 2000) using the SAS system ver. 9.2. (SAS Institute, 2004).

RESULTS

Development and Survivorship

The effect of different canola cultivars on developmental times for total nymphal stages of \(L.\) erysimi are shown in Table 1. Statistical analysis showed that there were significant differences between nymphal developmental times on different canola cultivars \((F=46.91; \text{df}=3, 199; P<0.05)\). The nymphal developmental time of \(L.\) erysimi on Okapi \((8.91d)\) were longer than those on other cultivars. The shortest nymphal developmental time was observed on Nathalie \((7.13d)\) (Table 1). The age-specific survival rate curves \((l_x)\) of \(L.\) erysimi on different canola cultivars are presented in Figure 1. The survival rate of total nymphal stages was the highest on Nathalie compared with the other cultivars tested. The results showed that feeding on Okapi caused a steep decline in \(l_x\), whereas nymphal survival rate decreased at a constant rate by feeding on other cultivars (Figure 1).

Adult Longevity and Fecundity

The effect of different canola cultivars on adult longevity, reproduction period, and fecundity of \(L.\) erysimi are shown in Table 1.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Nymphal developmental time (d)</th>
<th>Adult longevity (d)</th>
<th>Fecundity (offspring)</th>
<th>Reproduction period (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nathalie</td>
<td>7.13 ± 0.07d</td>
<td>20.12 ± 0.31a</td>
<td>57.12 ± 2.57a</td>
<td>11.08 ± 0.19a</td>
</tr>
<tr>
<td>Danube</td>
<td>7.84 ± 0.11c</td>
<td>18.16 ± 0.19b</td>
<td>46.64 ± 1.55b</td>
<td>9.55 ± 0.29b</td>
</tr>
<tr>
<td>Neptune</td>
<td>8.30 ± 0.11b</td>
<td>18.06 ± 0.37b</td>
<td>46.05 ± 1.67b</td>
<td>9.30 ± 0.36b</td>
</tr>
<tr>
<td>Okapi</td>
<td>8.91 ± 0.15a</td>
<td>15.14 ± 0.31c</td>
<td>36.13 ± 2.34c</td>
<td>7.87 ± 0.40c</td>
</tr>
</tbody>
</table>

*Means followed by different letters within a column were significantly different at \(P<0.05\) (Tukey test).
The results showed that there were significant differences between adult longevity on different canola cultivars (F=42.76; df= 3, 143; P< 0.05). The longest adult longevity was observed in aphids reared on Nathalie. In addition, adult longevity of aphids reared on Okapi was significantly shorter than that of the other three cultivars. Significant differences in reproduction period were observed among different canola cultivars (F=18.73; df= 3, 79; P< 0.05). The shortest reproduction period and the lowest fecundity were observed on Okapi, while the longest reproduction period and highest fecundity were observed on Nathalie. Moreover, the mean total fecundity per female aphids was significantly affected by canola cultivars (F=15.14; df=3, 79; P< 0.05), and ranged from 36.13 (Okapi) to 57.12 (Nathalie) nymphs per female (Table 1).

Life Table Parameters

Age specific life table parameters of *L. erysimi* on different canola cultivars are shown in Table 2. The R_0 values of *L. erysimi* showed significant differences on four canola cultivars (F=31.28; df= 3, 79; P< 0.05). The lowest net reproductive rate

Table 2. Life table parameters (mean ± SE) of the mustard aphid, *Lipaphis erysimi* on four canola cultivars.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>R_0 (female offspring)</th>
<th>r_m (d$^{-1}$)</th>
<th>λ (d$^{-1}$)</th>
<th>T (d)</th>
<th>DT (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nathalie</td>
<td>30.62 ± 1.35a</td>
<td>0.30 ± 0.00a</td>
<td>1.35 ± 0.01a</td>
<td>11.54 ± 0.12c</td>
<td>2.34 ± 0.03d</td>
</tr>
<tr>
<td>Danube</td>
<td>23.39 ± 0.47b</td>
<td>0.26 ± 0.00b</td>
<td>1.30 ± 0.00b</td>
<td>12.02 ± 0.09b</td>
<td>2.64 ± 0.02c</td>
</tr>
<tr>
<td>Neptune</td>
<td>22.55 ± 0.73b</td>
<td>0.23 ± 0.00c</td>
<td>1.26 ± 0.00c</td>
<td>13.46 ± 0.11a</td>
<td>2.99 ± 0.03b</td>
</tr>
<tr>
<td>Okapi</td>
<td>16.40 ± 0.73c</td>
<td>0.21 ± 0.00d</td>
<td>1.23 ± 0.00d</td>
<td>13.29 ± 0.20a</td>
<td>3.29 ± 0.05a</td>
</tr>
</tbody>
</table>

* Means followed by different letters within a column were significantly different at $P < 0.05$ (Tukey test).
was observed in aphids reared on Okapi, while those reared on Nathalie had the highest R_0 values. The T values of *L. erysimi* showed significant differences on four canola cultivars ($F=61.39$; $df=3$, 79; $P<0.05$). The highest and lowest mean generation time of aphid were observed on Neptune or Okapi (with no significant difference), and Nathalie, respectively. The values of intrinsic rate of increase in canola cultivars (Nathalie, Neptune, Danube and Okapi) were 0.30, 0.23, 0.26 and 0.21 (female/ female/ day), respectively (Table 2). The r values showed significant differences on the four canola cultivars ($F=114.58$; $df=3$, 79; $P<0.05$). In addition, life table parameters of *L. erysimi* were significantly affected by canola cultivars (DT: $F=142.25$, $df=3$, 79; $P<0.05$; λ: $F=109.67$, $df=3$, 79; $P<0.05$).

DISCUSSION

Our results showed that different canola cultivars could significantly affect developmental time, survival, and fecundity of *L. erysimi*. In this research, nymphal developmental times of the aphid on different canola cultivars (Nathalie, Neptune, Danube and Okapi) were 7.13, 8.30, 7.84 and 8.91 days, respectively. The nymphal developmental time of *L. erysimi* on Okapi was significantly longer than on other cultivars, which is probably attributed to low nutritional value of this cultivar (Talaee et al., 2016). Similar results reported by Amjad and Peters (1992) for *L. erysimi* demonstrated that the duration of immature stages of aphid on different canola cultivars was 9.75 days. However, Yue and Liu (2000) revealed that the duration of immature stages of aphid on different cabbage cultivars was 7±0.2 days. The shortest nymphal developmental time was observed on Nathalie and was close to that reported by Roudposhti et al. (2012) on canola (7.13d). The maximum duration of nymphal stages of aphid was recorded on Okapi. The minimum survivorship of aphids was observed on Okapi. Therefore, according to the nymphal developmental time and survivorship, Okapi was a less suitable host for *L. erysimi* and reduced the performance of the insect, in agreement with the results of Roudposhti et al. (2012). The green peach aphid, *Myzus persicae* (Sulzer) had lower survival rate and preference on Okapi (Fathi et al., 2010).

The effect of different canola cultivars on adult longevity of *L. erysimi* was similar to those reported for *L. erysimi* on canola (Roudposhti et al., 2012). However, there were no significant differences among Brassica species (Rana, 2005) and green and red cabbage (Yue and Liu, 2000) for adult longevity of aphid in previous studies. The differences in adult longevity may be attributed to the quality of the plants, such as nutrition and chemicals in the leaves (Yue and Liu, 2000). Effect of canola cultivars was significant in the reproduction of aphid. These findings agreed with those reported by other researchers that showed plant cultivar and especially its quality significantly affected the fecundity of *L. erysimi* (Choudhury and Pal, 2009, Mamun et al., 2010, Fallahpoure et al., 2015). In addition, when aphids were reared on Okapi, m_n was lower than that of aphids grown on Nathalie, Neptune or Danube (Figure 2).

The intrinsic rate of increase is a measure of performance commonly used to assess the level of plant resistance to aphids (Bethke et al., 1998). The intrinsic rate of natural increase (r) is the basic parameter for explanation of a population growth potential under certain food conditions and the best single value reflecting survival, fecundity, longevity, and speed of species development (Carey, 1993). In this study, the higher intrinsic rate of increase of *L. erysimi* was obtained on Nathalie, which was lower than the highest value reported by Roudposhti et al. (2012) on land race canola cultivar (0.32 day$^{-1}$). However, r_m value of *L. erysimi* on the other canola cultivars was close to the one reported by Roudposhti et al. (2012). The highest and lowest r_m (0.25 and 0.12 day$^{-1}$) were achieved for aphids reared on
Figure 2. Age-specific net fecundity rates of the mustard aphid, *Lipaphis erysimi* on four canola cultivars.

Zarfam and Modena, respectively (Fallahpour *et al.*, 2015). In the present study, the lower \(r_m \) of *L. erysimi* was obtained on Okapi and was higher than the lowest value reported by Fallahpour *et al.* (2015). However, according to our results, \(r_m \) of this pest was similar to that reported by Fallahpour *et al.* (2015) on other canola cultivars. Differences in life table parameters of aphid in our study and other researchers can be due to the influence of different rearing methods applied (Lamb *et al.*, 1987) and host plants (Dixon, 1987). In the present study, higher values for \(R_0, r_m, \lambda \) and lower values for \(DT \) on Nathalie, Neptune and Danube was mainly due to lower nymphal developmental time and mortality, and higher reproduction of the aphid on these cultivars.

Host plant quality is known to be an important factor affecting aphid demography, survival, fecundity, and life expectancy (Dixon, 1987). Biological parameters of insects can be influenced by several biotic and abiotic features of these factors; host plant species can significantly affect mortality and reproductive capacity rates (Tsai and Wang, 2001). Host plant effects on aphids’ biological characteristics have been studied by many researchers (Polat-Akkopru *et al.*, 2015, Karami *et al.*, 2016, Doryanizadeh *et al.*, 2016). However, there are limited studies on performance of *L. erysimi* on canola cultivars. Biological parameters of *L. erysimi* on canola cultivars have been studied under different nitrogen fertilization regimes (Fallahpour *et al.*, 2015) and on brassica species (Khajehzadeh *et al.*, 2010, Rudposhti *et al.*, 2012). They showed that nitrogen fertilization positively affected \(r_m \) of aphids on all canola cultivars.

In conclusion, our experimental results showed significant effect of canola cultivars on life table parameters of *L. erysimi*. This study illustrates that aphids feeding on Danube, Neptune, and especially Nathalie had shorter nymphal developmental time, longer adult longevity, and higher survival rate, \(r_m, R_0 \), and fecundity. Consequently, these cultivars were suitable hosts for population growth of the pest. The less susceptibility to *L. erysimi* observed in aphids reared on Okapi was due to the species’ longer immature developmental time, shorter adult longevity, and lower survival rate, \(r_m, R_0 \), and fecundity. This
suggested Okapi as a less suitable host compared to the others. In addition, using the less susceptible cultivars could be effective in decreasing pest control costs.

REFERENCES

634
Life Table of Lipaphis erysimi on Canola Cultivars

42. SPSS, Inc. 2010. SPSS 19 for Windows, user's guide. SPSS, Inc. Chicago, IL.

42. SPSS, Inc. 2010. SPSS 19 for Windows, user's guide. SPSS, Inc. Chicago, IL.
ارقام ناتالی، نیتون و دانوب عملکرد مطلوبی دارد. به طور کلی نتایج نشان داد که ارقام کلزا روی پارامترهای جدول زندگی شته خردل اثر معنی‌داری دارد و ارقام ناتالی، نیتون و دانوب به عنوان ارقام مطلوب برای رشد جمعیت آفت می‌باشند.