Application of Classification Tree Method to Determine Factors Affecting Somatic Cell Count in Holstein Cows

H. Ghiasi\(^1\), A. Sadeghi-Sefidmazgi\(^2\), R. Taherkhani\(^1\), M. Khaldari\(^3\), D. Piwczyński\(^4\), and M. Kolenda\(^4\)*

ABSTRACT

In the current study, the effect of phenotypic factors on Somatic Cell Count (SCC) was evaluated by using classification tree technique. The current study used a total of 1,972,031 test day records of SCC in parity 1 to 4 collected from 1,281 Iranian Holstein-Friesian cows’ herds through 2004–2013. The SCC records were converted to binary trait, defined as 1: If SCC ≤ 200,000, and 2: Otherwise. The CART (Classification And Regression Tree) algorithm for classification trees, with GINI index and Entropy function as the division criteria, was used to develop the tree. Statistical analysis was performed using ‘rpart’ package in R software. The constructed tree had 12 leaves and it was 6 levels deep. The results of classification tree procedure for ranking of importance of the variables responsible for the variation in SCC were, respectively, parity, test-day milk production, year of calving, season of calving, and days in milk (stage of lactation). Based on the obtained classification tree, different combination of variables associated with SCC could be identified. According to the classification tree, the lowest amount of SCC was expected in the group of cows that were in the 1st or 2nd parity; their test-day milk production was > 30 kg; they were calved from year 2004 to 2013; and their calving season was autumn or winter.

Keywords: Entropy function, GINI index, Holstein-Friesian cows, Mastitis, Milk production.

INTRODUCTION

To have a hygienic milk production and to increase the profitability, it is important to increase the cows’ udder health (Sargeant et al., 1998). One of the most common diseases that affect dairy cows’ udder health is mastitis (Sordillo et al., 1997). Several economic losses that are associated with mastitis include reduction in the milk production, change in the milk compositions (Beck et al., 1992, Harmon, 1994), reduction in the profitability (Sadeghi-Sefidmazgi et al., 2011), and increase of the SCC (Sharma et al., 2011). Additionally, Østergaard et al. (2005) stated that elimination of mastitis in dairy cowherd would increase a net return of 146 Euro per cow per year.

Somatic cells (mainly blood cells) that are present in milk are produced by immune system to combat with infection in udder (Norman et al., 2011). The Somatic Cell Counts (SCC) in milk is an indicator of udder health, which is widely used to detect clinical and subclinical mastitis (Detilleux et al., 1997). The SCC is also an indicator for milk quality (Ma et al., 2000). As mentioned...
by Norman et al., (2011), the legal maximum amount of SCC in milk varies across countries (e.g., 1,000,000 cells mL\(^{-1}\) in Brazil, 750,000 cells mL\(^{-1}\) in US; 500,000 cells mL\(^{-1}\) in Canada; 400,000 cells mL\(^{-1}\) in much of Europe, New Zealand and Australia). Through reducing somatic cell count, several benefits such as increased milk quality and decreased mastitis would be achieved. There is a correlation between SCC with milk quality (Ma et al., 2000) and mastitis (Ødegard et al., 2003; Vallimont et al., 2009). Decreased SCC in milk would lead to an increase in coagulating properties and cheese yield, and a decrease in loss of fat and casein in whey. It would also result in keeping the quality of milk, and increasing milk shelf-life (Ma et al., 2000). Schukken et al. (1992) concluded that reduction of SCC would increase the fat and lactose percentage. Nowadays, milk processors are implementing the premium quality payment programs for milk using low SCC.

From the herd management perspective, the SCC in milk can be reduced based on two methods. The first method, or short-term solution, is cows’ culling and the second method, or long-term solution, is reducing mastitis in herd by genetic selection and hygiene (Looper, 2012). Since SCC has a high genetic correlation with mastitis i.e. ranging from 0.53 to 0.91, it has been utilized to increase udder health through genetic selection (Ødegard et al., 2004; Vallimont et al., 2009). Factors influencing hygienic practices are the other influential factors that can reduce SCC. Several other factors such as parity (Skrzypek et al., 2004; Cengiz et al., 2015), stage of lactation (Taněc, 2013; Koc and Kizilkaya, 2009), season of calving (Singh and Ludri, 2001; Green et al., 2006), and year of calving (Ødegard et al., 2003; Faraji-Arugh et al., 2012) have been reported to affect SCC. Complex interaction might be one of the factors influencing SCC. To help milk producers to produce milk with low SCC, it is crucial to know the combination of factors that affect SCC. This can also help producers to group total milk of herd according to SCC. One of the suitable statistical methods to identify the group of cows producing low and high level of SCC is classification tree. Piwczyński and Sitkowska (2012) used classification tree for statistical modelling of SCC in Polish Holstein cows. They concluded that complex interactions between several phenotypic factors affected SCC.

Our study aimed to use classification tree method to evaluate the impact of various phenotypic factors on SCC in Iranian Holstein cows to identify in which group of cows SCC level would be low or high.

MATERIALS AND METHODS

This study was conducted on 1,972,031 test day records of SCC, coming from 78,881 cows kept in 1,281 Iranian Holstein cow’s herds. Data was collected by the Animal Breeding Center of Iran, between 2004 and 2013 throughout the entire country. The following rules were used to edit the data: (1) Cows with age at first calving before 18 and after 36 months were deleted from data file; (2) Only records gathered between days 5 and 400 after calving were used; (3) SCC lower than 5,000 cells mL\(^{-1}\) and higher than 6,000,000 cells mL\(^{-1}\) was omitted from data; and (4) The SCC records were defined as binary trait as ‘1’: If SCC<= 200,000, and ‘2’: Otherwise.

The following factors that could have an effect on SCC were considered in statistical analysis: Parity (1 to 4 levels), year of calving (2004 to 2013), season of calving (1: Spring, 2: Summer, 3: Autumn, 4: Winter), the amount of test-day milk production (1: <= 15 kg, 2: > 15 kg and <= 30 kg, 3: > 30 kg and <= 45 kg, 4: > 45 kg), days (d) in milk (stage of lactation) (1: <= 35 d, 2: > 35 d and <= 100 d, 3: > 100 d and <= 200 d, and 4: > 200 d). The effect of phenotypic factors on SCC was conducted by using classification tree analysis, also known as Classification And Regression Trees (CART). This method is a powerful and
popular predictive machine learning technique that is used for both classification and regression. Therefore, in the current study, the CART algorithm with GINI index [1] and Entropy function (ENTROPY, [2]) as division criteria were used in creating the classification tree.

\[
\text{GINI index} = 1 - \sum_{i=1}^{k} p_i^2
\]
\[
\text{ENTROPY} = -\sum_{i=1}^{k} p_i \log_2 (p_i)
\]

Where, \(p_1, p_2, ..., p_k\) is probability vector of object assignment to classes and \(k\) = Number of class.

Statistical analysis and creating the classification tree was conducted using rpart and rpart.plot packages in R software. Tree was built with the following constraints: it was assumed that the minimum size of the final node should not be less than 20 observations, the depth of tree (the length of the longest path from a root to a leaf) no higher than 6, and split must decrease the overall lack of fit of the model by a factor of cost-complexity parameter (cp). When the tree is constructed, the cross-validation techniques were used for further pruning it. In this method, data was divided to 10 subsets, 9 set for "learning samples" to create tree and 1 set for "test samples" to estimate cross validation error. The cross-validation error was used to prune the tree using the ‘1-SE’ rule (Breiman et al., 1984) and then the corresponding \(cp\) value was used to optimally pruned tree.

RESULTS

The distribution of SCC according to phenotypic factors is shown in Table 1. All the investigated factors have a statistically significant effect on variation of SCC (\(P<0.01\)). As illustrated in Table 1, most of the animals with SCC< 200,000 were observed in the group of cows that were in 1st parity; Test-day milk production> 45 kg; calved in 2010; calved in autumn, and days in milk < 36.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Level</th>
<th>% of SCC<= 200000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td>1</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>47.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.3</td>
</tr>
<tr>
<td>Test-day milk production (kg)</td>
<td><=15</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td>> 15 and <= 30</td>
<td>49.5</td>
</tr>
<tr>
<td></td>
<td>> 30 and <= 45</td>
<td>55.3</td>
</tr>
<tr>
<td></td>
<td>> 45</td>
<td>56.5</td>
</tr>
<tr>
<td>Year of calving</td>
<td>2004</td>
<td>42.1</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>49.6</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>50.6</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>52.1</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>54.0</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>54.6</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>54.0</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>53.0</td>
</tr>
<tr>
<td>Season of calving</td>
<td>Spring</td>
<td>51.6</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>53.4</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>52.5</td>
</tr>
<tr>
<td>Days in milk (Days)</td>
<td><= 35</td>
<td>55.4</td>
</tr>
<tr>
<td></td>
<td>> 35 and <= 100</td>
<td>52.7</td>
</tr>
<tr>
<td></td>
<td>> 100 and <= 200</td>
<td>52.7</td>
</tr>
<tr>
<td></td>
<td>> 200</td>
<td>52.5</td>
</tr>
</tbody>
</table>
The rankings of variable importance are illustrated in Table 2. All the importance measures were scaled to maximum value of 100. Values shown in the “importance” column in Table 2 are the crucial factors in reducing node impurity. Accordingly, parity is the most important factor for predicting SCC, followed by test-day milk production, year of calving, season of calving, and days in milk.

The graphical model of constructed classification tree is depicted in Figure 1. To avoid over-fitting of the data, the tree was pruned to create an optimal classification tree. The cross-validation error and its standard error were 0.915 and 0.0007.

Table 2. Importance variable.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td>52</td>
</tr>
<tr>
<td>Test-day milk production</td>
<td>29</td>
</tr>
<tr>
<td>Year of calving</td>
<td>12</td>
</tr>
<tr>
<td>Season of calving</td>
<td>5</td>
</tr>
<tr>
<td>Days in milk</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 1. The classification tree, where: Season (season of calving) – 1: Spring, 2: Summer, 3: Autumn, 4: Winter; Test-day Milk Production (the amount of test-day milk production, kg – 1: <= 15, 2: > 15 and <= 30, 3: > 30 and <= 45, 4: > 45); Days in milk (stage of lactation) – 1: <= 35, 2: > 35 and <= 100, 3: > 100 and <= 200, 4: > 200.
respectively. According to the ‘1-SE’ rule, the cross-validation error to identify the point to prune the tree was 0.915 + (1 × 0.0007) = 0.9157. The corresponding \(cp (0.001) \) for 0.9157 was applied to prune the tree (Figure 3). The resulting tree had 12 leaves and it was six levels deep. To construct the tree, the greatest division was carried out based on parity, test-day milk production, and year of calving (3 divisions). The lowest division, however, was conducted based on the season of calving and days in milk (1 division). Each node and leaf presented in the classification tree, has the following information: (1) The ID of a node, (2) The percentage of \(SCC \leq 200,000 \) (on the left), and the percentage of \(SCC >200,000 \) (on the right) (Figure 2).

The most important variable affecting \(SCC \) was parity (Table 2). In the classification tree, the first division occurred based on parity (Figure 1). Concerning the parity, \(SCC \) was divided in two branches: Parity < 3 (node 2) and Parity ≥ 3 (node 3). In node 2, \(SCC \leq 200,000 \) was 10 percent higher than node 3 (56 vs 46%).

Nodes 2 and 3 were split according to the test-day milk production. Division node 2 created two branches: Cows with test-day milk production ≥ 30 kg (node 4) and cows with test-day milk production lower than 30 kg (node 5). Percentage of \(SCC \leq 200,000 \) in nodes 4 and 5 was 59 and 52%, respectively. Node 3 was divided in node 6 (Cows with test-day milk production ≥ 30 kg) and node 7 (Cows with test-day milk production < 30 kg). In node 6, \(SCC \leq 200,000 \) was about 10 percent higher than node 7 (49 vs 39%).

Node 7 became the leaf. Node 6 was further branched into nodes 12 and 13 based on the year of calving. Cows calved in 2004, 2008 till 2013 were assigned to node 12 (Percentage of \(SCC \leq 200,000 \)= 50%). Moreover, cows calved from the year 2005 to 2007 were assigned to node 13 (Percentage of \(SCC \leq 200,000 \)= 44%). Node 13 became the leaf, while node 12 was further divided according to parity. Cows with Parity = 3 were assigned to node 18 (Percentage of \(SCC \leq 200,000 \)= 52%) and cows with Parity = 4 were assigned to node 19 (Percentage of \(SCC \leq 200,000 \)= 47%). Node 19 became the leaf. Node 18 created nodes 20 and 21 based on the test-day milk production. Cows with test-day milk production > 30 kg and ≤ 45 kg belonged to node 21 (Percentage of \(SCC \leq 200,000 \)= 51%), whereas cows with test-day milk production > 45 kg were assigned to node 20 (Percentage of \(SCC \leq 200,000 \)= 55%).

Node 20 became the leaf, while node 21 was further divided based on the stage of lactation or days in milk. Cows with days in milk ≤ 35 d and > 200 d were assigned to node 22 (Percentage of \(SCC \leq 200,000 \)= 53%). Whereas cows with Days in milk > 35 or ≤ 200 were assigned to node 23 (Percentage of \(SCC \leq 200,000 \)= 49%). Both nodes 21 and 22 became the leaves.

Node 4 was divided based on the year of calving. Thus, nodes 8 and 9 were created. Node 8 represented cows’ year of calving from 2005 to 2013. The percentage of \(SCC \leq 200,000 \) was 59% in this group. Node 9 included cows calved in the year 2004. The percentage of \(SCC \leq 200,000 \) in this group was 43%.

Node 8 became the leaf, whereas node 9 was branched further according to the season of calving. This resulted in nodes 14 (Percentage of \(SCC \leq 200,000 \) in cows calved in autumn and winter was 58%) and node 15 (Percentage of \(SCC \leq 200,000 \) in cows calved in spring and summer was 31%). Nodes 14 and 15 became the leaves.

Figure 2. Description of node 1 (root node), where (1) The ID of a node, (2) The percentage of \(SCC \leq 200,000 \) (on the left), and the percentage of \(SCC >200,000 \) (on the right).
Node 5 was divided further according to parity and created nodes 10 and 11. Cows in parity 1 were assigned to node 10 (Percentage of SCC<200,000 was 55%), while cows in parity 2 were allocated to node 11 (Percentage of SCC<200,000 was 47%). Node 11 became the leaf, whereas node 10 was further branched based on the year of calving. Therefore, it resulted in nodes 16 and 17. Cows calved in 2004 were assigned to node 17 (Percentage of SCC<200,000 was 43%) and cows calving in 2005 and later were assigned to node 16 (Percentage of SCC<200,000 was 56%).

DISCUSSION

The results of descriptive analysis in the current study were inconsistent with the results reported by Piwczyński and Sitkowska (2012) in Polish Holstein cows, except for season of calving. Piwczyński and Sitkowska (2012) showed that cows calved in summer had the lowest level of SCC. However, in the current study, the results indicated that animals calved in autumn had the lowest amount of SCC. In this study, percentage of records with SCC lower than 200,000 gradually decreased from early lactation to the end of lactation.

One of the features of classification tree is calculation of “variable importance”. The variables showed in the classification tree can be considered as deemed important. However, the variables that are not included in the classification tree are not necessarily unimportant since their effect might be masked by other correlated factors (Breiman et al., 1984). According to the results of current study, parity is the most important factor affecting SCC. The other important factors are test-day milk production, year of calving, season of calving, and days in milk.

The results revealed that SCC could be increased with the advancement of parity order, which is in line with the results obtained by Skrzypek et al. (2004) and...
Cengiz et al. (2015). Nevertheless, some prior studies demonstrated that parity does not affect SCC (Singh and Ludri, 2001). Somatic cell count increases during the mastitis infection. According to Hagnestam et al. (2007), mastitis occurs more frequently in multiparous cows compared to primiparous cows.

The result of this study showed that the amount of SCC in high producing cows was lower than low producing cows. It can be due to genetic selection for increasing milk production and reducing SCC in Iranian Holstein population. The genetic correlation between SCC and milk production is unfavourable for the first lactation cows (Koivula et al., 2005; Boettcher et al., 1992; Banos and Shook, 1990). However, a favourable negative genetic correlation has been reported between milk production and somatic cell count for the second and later parities (Banos and Shook, 1990). Additionally, a negative or almost zero phenotypic correlation has been reported between daily somatic cell count and milk yield in the first and second lactation (Yamazaki et al., 2013). This indicated that selection for lower SCC might not affect milk production in later lactations and that lower level of SCC may be expected in milk of high producing cows.

The results of other studies indicated that SCC varies during the lactation stage. The lowest amount of SCC could be expected in early (Days in milk <= 35) and the subsequent stages of lactation (Days in milk > 35) which is in contrast with the results obtained by Tančin (2013). In particular, the mentioned study reported that there was a linear increase in SCC throughout lactation and the highest amount of SCC was observed in the later stages of lactation. Besides, Monardes et al. (1983) observed the highest level of SCC shortly after calving. It was then rapidly declining to a minimum level in cows with 25 to 45 days in milk. It was also shown that the amount of SCC decreased until the third month of lactation and then fluctuated until the end of lactation (Koc and Kizilkaya, 2009).

According to results of this study, after 2005, the amount of SCC in the investigated population decreased with time. The decline of SCC over the calving years might be due to genetic selection to decrease SCC. Favourable genetic and phenotypic trend for SCC have been reported in Iranian Holstein cows (Faraji-Arugh et al., 2012) as well as in Holstein cows in other countries (Ødegard et al., 2003; Pagnacco et al., 1994).

This study revealed that animals calved in autumn and winter had lower amount of SCC than the ones calved in spring and summer. This is in agreement with the results obtained by Singh and Ludri (2001) and Green et al. (2006). Accordingly, the high amount of SCC during spring and summer can be because of heat, stress, and high risk of clinical mastitis in these seasons (De Vliegher et al., 2004).

The classification tree constructed in this study reveals that somatic cell count is diversified by parity, test-day milk production, year of calving, season of calving, and days in milk. Study results showed that the low level of somatic cell count can be expected in the group of cows that were in Parity < 3, were calved in Year >= 2005, with Test-day milk production > 30 kg, and their calving season was in autumn or winter, and were in early (Days in milk <= 35) or subsequent stages of lactation (Days in milk > 35).

REFERENCES

Factors Affecting Somatic Cell Count in Holstein

کاربرد درخت تصمیم گیری جهت تعیین فاکتورهای مؤثر بر شمار سلول های بدنی در گاوهاي هلشتاین ایران

ج. قیاسی، ع. صادقی سفید مزگی، ر. ظاهر خانی، م. خالداری، د. پیژن‌سکی، و.م. کولندا

چکیده

در این مطالعه کاربرد درخت تصمیم گیری جهت تعیین فاکتورهای مؤثر بر شمار سلول های بدنی (SCC) با استفاده از نکتیک درخت تصمیم گیری (CART) به صورت باینری (در صورت کمتر از 277777 عدد 1 و در غیر این صورت عدد 2) به صورت جی‌نی (GINI) و تابع آنتروپی به عنوان معیار طبقه‌بندی و شاخص تشخیص (GINI) و تابع آنتروپی به الگوریتم CART (classification and regression tree) و نرم‌افزار rpart در محیط نرم‌افزار R انجام گرفت. درخت حاصل شده دارای 6 سطح و 12 برگ بود. بر اساس نتایج حاصل شده از درخت تصمیم گیری هم‌مرتبین فاکتورهای مؤثر بر صفت SCC بود. بر اساس نتایج حاصل شده از درخت تصمیم گیری هم‌مرتبین فاکتورهای مؤثر بر صفت SCC می‌تواند به ترتیب عبارت باشد: شکم زایش، مقدار شیر تولیدی، سال زایش، فصل زایش و روز شیردهی (مرحله شیردهی). بر اساس درخت تصمیم گیری حاصل شده از SCC فاکتورهای فنوتیپی موثر بر SCC قابل شناسایی می‌باشد. درخت تصمیم گیری ایجاد شده در این
مطالعه نشان می‌دهد که کمترین مقدار SCC در گاوهایی مشاهده شد که شکم زایش آنها اول یا دوم و مقدار تولید شیر روزانه آنها بیشتر از 30 کیلوگرم و در فصل پاییز یا زمستان زایش و سال زایش آنها بین 1392 تا 1384 می‌باشد.