Comparison of RAPD, ISSR, and DAMD Markers for Genetic Diversity Assessment between Accessions of *Jatropha curcas* L. and Its Related Species

S. Gautam Murty¹*, F. Patel¹, B. S. Punwar¹, M. Patel¹, A. S. Singh¹, and R. S. Fougat¹

ABSTRACT

Molecular characterization of 19 *Jatropha* accessions that included 15 accessions of *J. curcas* and 4 different species was carried out using 3 different markers systems. Highest polymorphism (96.67%) was recorded by RAPD followed by DAMD (91.02%) and ISSR (90%). Polymorphism Information Content (PIC) was higher for DAMD (0.873) and almost equal for RAPD (0.863) and ISSR (0.862) markers, whereas Resolving Power (Rp) was found to be higher for RAPD as compared to the other two marker systems. Marker Index (MI) values varied greatly with highest (19.07) in RAPD. Shannon index (i), observed number of alleles (na), effective number of alleles (ne) and Nei’s genetic diversity (h) values were found to be significantly higher for ISSR as compared to RAPD and DAMD markers. Thus, all the markers proved to be equally efficient for diversity studies in *Jatropha*. Several alleles in all the markers indicated *J. gossypiifolia* as one of the parents of *J. tanjorensis*. Dendrograms and PCA plots generated based on RAPD showed three major clusters with *J. integerrima* and *J. podagrica* falling in group I, fifteen *J. curcas* accessions in group II, and *J. gossypiifolia* as an outlier in group III. DAMD markers also showed similar clustering pattern whereas ISSR showed last cluster of *J. gossypiifolia* and *J. tanjorensis*. These results may provide a future base for conservation and characterization of available *Jatropha* genetic resources.

Keywords: Genetic diversity, *Jatropha*, Molecular markers, Polymorphism.

INTRODUCTION

The genus *Jatropha* belongs to tribe Joannesieae of Crotonoideae in the Euphorbiaceae family and contains approximately 170 known species (Heller, 1996). The approximate genome size of *J. curcas* is 416 Mbp, which is close to that of rice (430 Mbp) (Carvalho et al., 2008). The true center of origin of *J. curcas* is still controversial, but several group of scientists argue it to be a part of flora of Mexico and, probably, of northern central America as its original center (Wilbur, 1954). Aponte(1978) stated central America as well as Mexico, where it is mostly found in the coastal forests as its origin. It is a drought resistant species widely cultivated in tropics as a living fence. The plant is monoecious and flowers are unisexual. Mostly, it is an insect pollinated plant and its life span is approximately 50 years (Henning et al., 2003; Putten et al., 2010)

It is a multipurpose plant with many attributes and considerable potential that can be grown in low to high rainfall areas and can be used to reclaim land, as a hedge and/or as a commercial crop. Thus, growing it could provide employment, improve the environment, and enhance the quality of rural life (Openshaw, 2000). In today’s world, it has attained an important position as an oil bearing crop. In spite of best nutritional composition, seed cake obtained from the *J. curcas* remains unutilized as an animal feed due to its toxic nature and no successful attempts have been made till now for completely eliminating the

1 Department of Agricultural Biotechnology, Anand Agricultural University, Anand-388110, Gujarat, India.
² Corresponding author; e-mail: saripalligautam86@gmail.com
toxicity (Makkar et al., 1998; Makkar et al., 2009; Ahmed et al., 2009). Several attempts have been made to improve the oil content through biochemical means for biodiesel production (Su and Wei, 2008).

Apart from Jatropha curcas, several other species of Jatropha include J. podagrica, J. multifida, J. paendarifolia, J. tanjorensis, J. glandulifera, and J. gossypiifolia are widely distributed in India. J. tanjorensis Ellis and Saroja, reported to be a native to India, appears in only few districts of Tamil Nadu. It is generally grown as a hedge plant and reported as a natural interspecific hybrid between J. curcas L. and J. gossypiifolia L (Prabhakaran et al., 1999). New ornamental hybrids have also been developed between J. curcas and J. integerrima using interspecific hybridization (Sujatha and Prabhakaran, 2003).

Germplasm characterization is necessary to enhance germplasm management and utilization. Information regarding the extent and pattern of genetic variation in J. curcas population is limited (Basha and Sujatha, 2007). Diversity studies, based on their morphological traits, are not reliable as they are highly influenced by environment. Molecular diversity assessed by using molecular markers is independent of the influence of environment and estimated by using DNA from any growth stage. Moreover, a large number of polymorphic markers are required to measure genetic relationships and genetic diversity in a reliable manner. This limits the use of morphological characters and isozymes as useful markers because they lack polymorphism. Molecular genetic markers could aid the long term objective of identifying diverse parental lines to generate segregating populations for tagging important traits, such as gene(s) for high content of specific fatty acids like oleic, linolenic, etc (Gupta et al., 2008). Also, DNA-based diagnostics are now well established as a means to assay diversity at the locus, chromosome, and whole genome levels. Moreover, the use of low cost molecular markers like RAPD (Bardacki, 2001) and ISSR for the identification of species and interspecific hybrids can lead to the genetic improvement of the species and genetic resource management (Bornet and Branchard, 2001; Pamidimarri et al., 2009a). Several studies pertaining to genetic diversity assessment in the genus Jatropha using RAPD (Pamidimarri et al., 2009a; Iqbal et al., 2010; Basha and Sujatha, 2007; Ranade et al., 2008; Pamidimarri et al., 2009b; Ganesh Ram et al., 2008; Subramaniyum et al., 2009) , AFLP (Pamidimarri et al., 2009a; Pamidimarri et al., 2009b; Tatikonda et al., 2009; Sun et al., 2008)), ISSR (Gupta et al., 2008; Basha and Sujatha, 2007; Cai et al., 2010; Vijayanand et al., 2009; Senthil Kumar et al., 2008; Tanya et al., 2011; Umamaheshwari et al., 2010) as well as SSR (Pamidimarri et al., 2009a; Sun et al. 2008; Pamidimarri et al., 2010) have been reported.

By keeping in view the above mentioned reasons, it seemed necessary to carry out diversity analysis among the 15 Jatropha curcas genotypes, four Jatropha species viz. J. podagrica, J. gossypiifolia and J. integerrima and one naturally occurring interspecific hybrid, J. tanjorensis (hybrid of J. curcas and J. gossypiifolia) using RAPD, ISSR and DAMD markers. Moreover, there are very few reports pertaining to multiple marker comparison studies in Jatropha. In addition to the above mentioned points, the objectives of the present study included the identification of some species specific markers, comparison of all the three markers and thereby testing their reliability of strength for diversity analysis and finally genetic purity testing and confirmation of hybrid nature of J. tanjorensis, which is reported to be a natural interspecific hybrid between J. curcas and J. gossypiifolia.

MATERIALS AND METHODS

Experimental Material

In total, 19 accessions were collected from experimental plantations raised at Jatropha farm, Anand Agricultural University. These included 15 of Jatropha curcas L. from different geographical regions of India, four species of Jatropha genus viz. Jatropha gossypiifolia L., Jatropha podagrica Hook, Jatropha integerrima Jacq. and Jatropha tanjorensis, which is reported to be a naturally occurring male sterile interspecific hybrid of
Genetic Diversity in the Genus Jatropha

Jatropha curcas L. and Jatropha gossypifolia L. (Table 1).

Genomic DNA Extraction

Total genomic DNA was extracted by using the CTAB method as described by Doyle and Doyle (1990) with some minor modifications. The spectrophotometric readings showed the purity of DNA in the range of 0.8-2.0.

Molecular Marker Analysis

Three different markers viz. RAPD (Table 2), ISSR (Table 3), and DAMD (Table 4) were used in the study. Amplification of RAPD fragments was performed according to standardized methods described by Williams et al. (1990). Total of 100 primers from OPA to OPH series (MWG biotech, Germany) were randomly screened out of which 22 were selected based on the resolution and those having more than five bands. The reaction was performed in a 25 μl volume containing 2.5 μl Taq buffer with MgCl₂ (Bangalore Genei, India), 0.5 μl Taq polymerase (3 U μl⁻¹) (Bangalore Genei India), 0.5 μl dNTPs (2.5 mM each) (Fermentas, USA), 1.5 μl primer (10 picomoles μl⁻¹), 2.5 μl template DNA (20 ng μl⁻¹) and the volume was finally made up with 17.5 μl nuclease free water (Amresco, USA). Amplification was performed in a thermal cycler (Biometra, Germany) with program of initial denaturation at 94°C for 4 minutes, 42 cycles of denaturation at 94°C for 1 minute, annealing at 38°C for 1 minute, extension at 72°C for 2 minutes, and final extension at 72°C for 6 minutes. The amplification of genomic DNA for ISSR analysis was performed using the primers of Gupta et al. (2008) and two primers of UBC (University of British Columbia) series (Table 3). The amplification of genomic DNA for DAMD analysis (Heath et al., 1993) was performed using four DAMD primers (Ranade et al., 2008) (Table 4). All the amplicons generated were resolved on 1.8 to 2% Agarose gel prepared in 1X TBE. The gels were stained with ethidium bromide and...
Table 2. RAPD marker analysis data.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>No. of polymorphic loci</th>
<th>Polymorphism (%)</th>
<th>PIC</th>
<th>Resolving power</th>
<th>Marker Index (MI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA4</td>
<td>11</td>
<td>100</td>
<td>0.901</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>OPA7</td>
<td>9</td>
<td>100</td>
<td>0.818</td>
<td>5.26</td>
<td></td>
</tr>
<tr>
<td>OPA9</td>
<td>9</td>
<td>100</td>
<td>0.755</td>
<td>6.79</td>
<td></td>
</tr>
<tr>
<td>OPA18</td>
<td>14</td>
<td>87.5</td>
<td>0.881</td>
<td>8.45</td>
<td></td>
</tr>
<tr>
<td>OPA13</td>
<td>13</td>
<td>100</td>
<td>0.889</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>OPA11</td>
<td>8</td>
<td>100</td>
<td>0.886</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>OPC8</td>
<td>10</td>
<td>100</td>
<td>0.864</td>
<td>4.95</td>
<td></td>
</tr>
<tr>
<td>OPC15</td>
<td>13</td>
<td>100</td>
<td>0.830</td>
<td>5.90</td>
<td></td>
</tr>
<tr>
<td>OPC18</td>
<td>12</td>
<td>100</td>
<td>0.862</td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td>OPD5</td>
<td>14</td>
<td>100</td>
<td>0.868</td>
<td>9.37</td>
<td></td>
</tr>
<tr>
<td>OPD14</td>
<td>12</td>
<td>100</td>
<td>0.872</td>
<td>6.85</td>
<td></td>
</tr>
<tr>
<td>OPD17</td>
<td>12</td>
<td>92.3</td>
<td>0.830</td>
<td>3.90</td>
<td>19.07</td>
</tr>
<tr>
<td>OPE4</td>
<td>12</td>
<td>92.3</td>
<td>0.877</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td>OPE6</td>
<td>12</td>
<td>100</td>
<td>0.783</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>OPF4</td>
<td>9</td>
<td>90</td>
<td>0.803</td>
<td>6.94</td>
<td></td>
</tr>
<tr>
<td>OPF10</td>
<td>15</td>
<td>100</td>
<td>0.892</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>OPG10</td>
<td>12</td>
<td>100</td>
<td>0.875</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>OPG12</td>
<td>8</td>
<td>72.72</td>
<td>0.892</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>OPG14</td>
<td>16</td>
<td>94.11</td>
<td>0.906</td>
<td>11.10</td>
<td></td>
</tr>
<tr>
<td>OPH12</td>
<td>17</td>
<td>100</td>
<td>0.920</td>
<td>7.63</td>
<td></td>
</tr>
<tr>
<td>OPH13</td>
<td>17</td>
<td>100</td>
<td>0.916</td>
<td>10.48</td>
<td></td>
</tr>
<tr>
<td>OPH14</td>
<td>11</td>
<td>100</td>
<td>0.838</td>
<td>5.31</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>266</td>
<td>96.72%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>12.09</td>
<td>96.76%</td>
<td>0.862</td>
<td>6.62</td>
<td></td>
</tr>
</tbody>
</table>

documented using gel documentation system (Bio-Rad, California).

Data Analysis

Clear and distinct bands amplified by the primers were scored for the presence and absence (0 and 1) of the corresponding band among the genotypes. By comparing the banding patterns of all the accessions, specific bands were identified and genetic purity of *J. tanjorensis* was also confirmed. Various genetic parameters viz., Polymorphism Information Content (PIC) (Bootstein et al., 1980), Resolving power (Rp) (Prevost and Wilkinson, 1999), Marker Index (Nagraju et al., 2001, Powell et al., 1996), Shannon index (i) (Shannon and Weaver, 1949), Observed (na) and effective (ne) no. of alleles, Nei’s genetic diversity (h) (Nei, 1973) were calculated.

PIC = 1 - \(\sum f_i^2 \)

Where, \(f_i \) is the frequency of \(i^{th} \) allele.

Marker Index (MI) = EMR X DI (av) \(p \),
where EMR = Effective Multiplex Ratio= the product of the fraction of polymorphic loci and the number of polymorphic loci for an individual assay.
EMR = np(np/n).,
DIn = Diversity Index for genetic markers = 1 - \(\sum p_i^2 \) where \(p_i \) is the allele frequency of the \(i^{th} \) allele.
Di(ave) = Arithmetic mean heterozygosity = \(\frac{\sum D_i}{n} \) where \(n \) is the markers analysed.
Di for polymorphic markers is (Diav)p = \(\frac{\sum D_i}{np} \) where `np` is the number of polymorphic loci and \(n \) is the total number of loci.

Rp = \(\sum b \)

Where, \(lb \) = Band informativeness and \(lb = 1 - 2 \sqrt{0.5 - p} \), where \(p \) = Proportion of genotypes containing the band.

Genetic similarity matrices were generated by Jaccard’s coefficient of similarity (Jaccard, 1908) by using the SIMQUAL module of NTSYS-pc 2.02 (Rohlf, 1998). Cluster analysis was performed by agglomerative technique using the Un-weighted Pair Group Method with
Table 3. ISSR marker analysis data.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
<th>No. of polymorphic bands</th>
<th>Polymorphism (%)</th>
<th>PIC</th>
<th>Resolving power</th>
<th>Marker Index (MI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSR 2</td>
<td>AGAGAGAGAGAGAGAGT</td>
<td>9</td>
<td>100%</td>
<td>0.855</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>ISSR 4</td>
<td>GAGAGAGAGAGAGAGAT</td>
<td>8</td>
<td>88.88</td>
<td>0.831</td>
<td>4.74</td>
<td></td>
</tr>
<tr>
<td>ISSR 7</td>
<td>CTC TCT CTC TCT CTC TT</td>
<td>19</td>
<td>100</td>
<td>0.928</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>ISSR 8</td>
<td>ACA CAC ACA CAC ACA CT</td>
<td>7</td>
<td>77.77</td>
<td>0.844</td>
<td>4.73</td>
<td></td>
</tr>
<tr>
<td>ISSR12</td>
<td>TGT GTG TGT GTG TGT GA</td>
<td>12</td>
<td>100</td>
<td>0.890</td>
<td>6.52</td>
<td></td>
</tr>
<tr>
<td>ISSR 21</td>
<td>AGA GAG AGA GAG AGA GYT</td>
<td>13</td>
<td>86.6</td>
<td>0.911</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>ISSR 22</td>
<td>GAG AGA GAG AGA GAG AYT</td>
<td>10</td>
<td>70</td>
<td>0.915</td>
<td>8.31</td>
<td></td>
</tr>
<tr>
<td>ISSR 23</td>
<td>CTCTCTCTCTCTCTCTCTRA</td>
<td>20</td>
<td>95</td>
<td>0.928</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>ISSR24</td>
<td>GAGAGAGAGAGAGAGAGAGAC</td>
<td>3</td>
<td>50</td>
<td>0.694</td>
<td>2.95</td>
<td>7.76</td>
</tr>
<tr>
<td>UBC 841</td>
<td>GAGAGAGAGAGAGAGAYC</td>
<td>12</td>
<td>100</td>
<td>0.827</td>
<td>3.68</td>
<td></td>
</tr>
<tr>
<td>UBC 826</td>
<td>ACACACACACACACACC</td>
<td>13</td>
<td>92%</td>
<td>0.866</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>126</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>11.45</td>
<td>71%</td>
<td>0.863</td>
<td>6.25</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. DAMD marker analysis data.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
<th>No. of polymorphic loci</th>
<th>Polymorphism (%)</th>
<th>PIC values</th>
<th>Resolving power</th>
<th>Marker Index (MI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.6</td>
<td>GGTGTAGAGAGGGGT</td>
<td>19</td>
<td>100</td>
<td>0.914</td>
<td>9.32</td>
<td></td>
</tr>
<tr>
<td>HBV</td>
<td>CCTCCCTCCCTCCT</td>
<td>9</td>
<td>81.8</td>
<td>0.841</td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>HVR</td>
<td>GAGGTTTTTCA,</td>
<td>12</td>
<td>92.3</td>
<td>0.898</td>
<td>7.05</td>
<td></td>
</tr>
<tr>
<td>M13</td>
<td>GAGGTTGCGGTCTTCT</td>
<td>9</td>
<td>90</td>
<td>0.837</td>
<td>3.48</td>
<td>3.46</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>49</td>
<td>92.45</td>
<td>3.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>12.25</td>
<td>91.02</td>
<td>0.872</td>
<td>5.75</td>
<td></td>
</tr>
</tbody>
</table>
Arithmetic Mean (UPGMA) by SAHN clustering function of NTSYSpc 2.02.

Cophenetic correlation and Mantel’s tests were carried out by using the COPH and MXCOMP modules of the same software.

PCA analysis was carried out using the EIGEN module and results were expressed as 2D and 3D plots. These plots were constructed by extracting the first three most informative EIGEN values that showed the maximum variation.

All the above mentioned variables were calculated individually for all the three markers as well as for RAPD+ISSR, ISSR+DAMD and RAPD+DAMD+ISSR for testing the combined ability of the markers for genetic diversity assessment. Comparison study was made between all the markers for their efficiency in diversity analysis.

RESULTS AND DISCUSSION

RAPD Results

The data collected from random amplification of polymorphic DNA with 22 arbitrary primers produced 275 total loci with 2,112 amplicons. Out of the 275 loci produced, 266 were polymorphic, amounting to a total polymorphism percentage of 96.67 (Table 2). Sixteen primers out of the 22 analyzed produced 100% polymorphism. Moreover, 15 out of the 22 primers produced fragments that were specific to some of the accessions of Jatropha curcas. Eleven primers amplified fragments that were common to J. tanjorensis and J. gossypiifolia. The primer OPG-10 amplified a fragment of mol wt 2.5 Kb that was common to many accessions but was intense in J. tanjorensis and J. gossypiifolia, which may indicate its high copy number in the particular accession. Examples of RAPD profile OPG 14 is presented in Plate 1.

The PIC values ranged from 0.755 to 0.920, indicating hypervariability among the accessions studied. Rp values ranged from 3.15 to 11.1, indicating the variability in the discriminating capacity of the primer.

Genetic Relationship

Genetic similarity (GS) matrix generated based on Jaccard’s similarity coefficient was found to be in the range of 0.14 (J. podagrica and J. gossypiifolia) to 0.82 (C-65 and Chharodi-5). Within the Jatropha curcas accessions, GS value observed were in the range of 0.41 (J. curcas cv. CSMCRI-ORGANJ-12 and RRL-MON-1105-C1) to 0.82 (C-65 and Chharodi-5).

Cluster and PCA Analysis

Clustering pattern revealed three major clusters. J. integerrima and J. podagrica were included in the same cluster, indicating high
similarity between the two, and the remaining accessions were included in the cluster I. *J. gossypiifolia* remained as an outlier and formed a separate identity (Figure 1). Thus, due to the high amount of morphological distinctness among the various species of *Jatropha*, the distribution of all the three wild species as separate clusters can be truly justified. Moreover, greater morphological variability of *J. gossypiifolia* in comparison to the other two can be attributed for its separate cluster formation (Pamidimarri *et al.* 2009b). *J. tanjorensis*, which is reported to be a naturally occurring male sterile hybrid of *J. curcas* and *J. gossypiifolia*, was included in the group with *J. curcas* accessions, indicating its closeness to *J. curcas*. Within the *J. curcas* accessions, accessions from Gujarat and its neighboring regions exhibited lower genetic diversity, whereas those of Ranchi and Assam showed greater variability as deduced from the dendrogram results.

The Principal Component Analysis (PCA) results almost coincided with the results of cluster analysis and the first three components, calculated through EIGEN module of NTSYSpc 2.02, revealed the maximum variation of 83%.

ISSR Results

ISSR results (Table 3) showed the polymorphism percentage in the range of 50% to 100%. Minimum polymorphism percentage of 50% was recorded by the primer ISSR 24, whereas 100% polymorphism was observed by the primers ISSR 7, ISSR 12, ISSR 2 and UBC 841. Out of the 140 loci observed, 126 were polymorphic and showed the average polymorphism percentage of 90%.

The PIC values for ISSR markers in the present investigation ranged from 0.827 to 0.928, reflecting a very high allelic diversity among the accessions. *Rp* values ranged from 2.95 to 10.0, which indicated a considerable variation in accession discriminating power of a primer. An example of ISSR 21 banding pattern is shown in Plate 2.

Total of 80 unique alleles were observed in all the 19 accessions of which 35 alleles were specific to *J. curcas* accessions and the remaining belonged to the wild species.

Maximum number of alleles in *J. curcas* accessions was observed in Ranchi-1-22 and RRL-MON-1105-C1. RAPD also showed maximum alleles in RRL-MON-1105-C1. Six alleles were observed which were common to *J. tanjorensis* and *J. gossypiifolia*, hinting the possibility of *J. gossypiifolia* as a second parent of *J. tanjorensis*. Only one allele of 254 bp was observed in *J. tanjorensis* by the primer UBC 841.

Genetic Relationships

The values obtained ranged from 0.29 to 0.74, reflecting a high genetic diversity between the accessions. Genetic similarity values between *J. gossypiifolia* and *J. tanjorensis* (0.55) was higher than that observed between *J. tanjorensis* and *J. curcas* accessions which showed average value of 0.48.

Cluster and PCA Analysis

The cluster analysis (Figure 2) using UPGMA method revealed three major clusters consisting of *J. curcas* accessions (I), *J. podagrica* and *J. integerrima* (II) and the third cluster of *J. gossypiifolia* and *J. tanjorensis*.

Figure 2. Dendrogram showing relationships among 19 *Jatropha* accessions using 156 ISSR bands based on Jaccard’s coefficient and UPGMA clustering method. X axis values indicate divergence scale coefficient.
No particular relation pertaining to cluster resolvance and geographical distribution was observed, but RRL-MON-1105-C1 formed a separate cluster as in RAPD. Hansraj and C-14 also formed a separate a cluster, the reason for which could not be ascertained. Hence, some other studies pertaining to morphological characters and quantitative characters need to be carried out which may lead to some better conclusions. J. gossypiifolia and J. tanjorensis were included in the same group. The cluster consisting of J. podagrica and J. integerrima was found to be similar to that observed in RAPD.

Total variation exhibited by all the three PCA components was 67%. The results obtained through PCA (Figure 3) produced separate clusters for J. curcas accessions and other species. J. tanjorensis was closer to J. gossypiifolia, pointing to its possibility as one of the parents and the result was in accordance with cluster analysis. Similar studies have also been reported in cucurbitacea (Dje et al., 2006), gossypium (Dongre et al. 2007) and castor (Gajera et al., 2010).

DAMD Results

The total number of loci amplified by DAMD profile of HBV depicting species specific amplicons along with some amplicons, which prove the hybrid nature of J. tanjorensis.

DAMD primers was 53, with the highest observed in 33.6 and the lowest in M13. Out of the 53 loci amplified, 49 were polymorphic and the highest polymorphic loci were observed in 33.6 and lowest in M13 and HBV (9). The polymorphism percentage obtained ranged from 81.8 to 100%, whereby the highest was obtained for 33.6 and lowest for HBV (Plate 3). Average polymorphism percentage was found to be 92.02.

The PIC values ranged from 0.837 to 0.914 with the lowest observed with primer M13 and the highest with 33.6. The Rp values ranged from 3.16 to 9.32, which indicated a moderate to very high resolving capacity of a primer for all the 19 accessions. The MI value was 3.46.

In total, 36 species specific markers were obtained by using all the four DAMD markers out of which 26 were specific to the wild species including the hybrid and the remaining ten were specific to J. curcas accessions (Table 7).

Genetic Relationship

The similarity matrix generated on the basis of Jaccard’s coefficient produced values ranging from 0.24 (between J. gossypiifolia and J. podagrica) and 0.88 (between Chharodi-5 and C-65 and between MP seeds and C-14). The high variation in the values indicated a good amount of variation between the accessions. The average similarity value between J. curcas and J. tanjorensis was found to be 0.50, whereas between J. tanjorensis and J. gossypiifolia, it was 0.45, pointing to almost-equal contribution of both parents to its hybrid nature.

Cluster and PCA Analysis

The dendrogram (Figure 4) generated through UPGMA method was resolved into three major groups including group I of J. curcas accessions, group II of J. podagrica and J. integerrima, and group III of J. gossypiifolia alone. There was no specific relationship between the geographical distribution and clustering pattern, but Ranchi-1-22 and J.tanjorensis were resolved into separate clusters as in RAPD. RRL-MON-1105-C1, which was resolved as a separate cluster in RAPD, was clustered with C-52.

Total variation exhibited by all the three components of PCA was 75% (Figure 5). The results obtained through PCA produced
separate clusters for *J. curcas* accessions and other species. Ranchi-1-22 formed a separate entity as in RAPD.

Combined Analysis of RAPD, ISSR and DAMD Markers

Combined analysis of all three markers considered for the present study was performed in order to judge the best marker, either individually or in combination for diversity studies in *Jatropha*. Hence, a combined analysis of RAPD+ISSR, ISSR+DAMD and RAPD+DAMD+ISSR was carried out. Cophenetic correlation values indicated very good correlation between all the markers, except between RAPD and ISSR and ISSR and DAMD (Tables 5 and 6).

Genetic Variability Parameters’ Comparison

RAPD marker showed the highest polymorphism of 96.76%, whereas ISSR and DAMD showed almost equal polymorphism of 92.85 and 90.72% (Table 5). In combination studies, RAPD+ISSR and RAPD+ISSR+DAMD showed almost equal polymorphism of approximately 94%, whereas ISSR+DAMD showed approximately 90% polymorphism. Highest species specific markers were found in DAMD i.e. 6.5 and highest *J. curcas* accession specific markers were observed in ISSR i.e. 3.18. Thus, DAMD marker can be considered better for identification of species specific diagnostic markers (Heath et al., 1993). The combined analysis of RAPD+ISSR, ISSR+DAMD and RAPD+ISSR+DAMD revealed the efficiency of RAPD+ISSR to be better as compared to other combinations (Table 5).

Thus, from the present analysis, it can be concluded that the maximum number of parameters need to be evaluated to judge the efficiency of a marker for diversity analysis.

DISCUSSION

High variation in *Jatropha* accessions within the species is usually related with geographic
range, mode of reproduction, mating system, seed dispersal, and fecundity. The genetic diversity detected in the present study may be due to all these prevalent factors. Moreover, the accessions studied were distributed in different geographical regions. The heterozygous and heterogeneous structure of Jatropha population driven by its out breeding behavior can also be attributed as one of the major reasons for high variability (Umamaheshwari et al., 2010). The ISSR results obtained in the present study portray slightly less polymorphism percentage when compared to Vijayanand et al. (2009) and Senthil Kumar et al. (2008), but showed very high polymorphism when compared to Tanya et al. (2011) and Basha and Sujatha (2007). The high Rp values obtained in all the three markers indicates good accession discriminating power of a primer. The species specific markers could be potentially useful in order to identify a Jatropha species from any mixed population comprising other members of Jatropha complex. These species specific

Table 6. Cophenetic correlation r values of RAPD, DAMD and ISSR.

<table>
<thead>
<tr>
<th>Markers</th>
<th>RAPD</th>
<th>ISSR</th>
<th>DAMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPD</td>
<td>0.96</td>
<td>0.777</td>
<td>0.916</td>
</tr>
<tr>
<td>ISSR</td>
<td>0.727</td>
<td>0.912</td>
<td>0.822</td>
</tr>
<tr>
<td>DAMD</td>
<td>0.889</td>
<td>0.764</td>
<td>0.961</td>
</tr>
</tbody>
</table>

- Below diagonal: Values based on original similarity matrix.
- Above diagonal: Values showing the comparison of cophenetic matrices.
- Diagonal: Values in bold showing the correlation the correlation of cophenetic and original similarity matrices on which the dendrograms were based.

Table 7. Correlation r values for various marker combinations.

<table>
<thead>
<tr>
<th>Markers</th>
<th>RAPD+DAMD</th>
<th>ISSR+DAMD</th>
<th>RAPD+DAMD+ISSR</th>
<th>RAPD+ISSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPD</td>
<td>0.995</td>
<td>0.964</td>
<td>0.995</td>
<td>0.755</td>
</tr>
<tr>
<td>DAMD</td>
<td>0.901</td>
<td>0.994</td>
<td>0.994</td>
<td>0.875</td>
</tr>
<tr>
<td>ISSR</td>
<td>0.776</td>
<td>0.994</td>
<td>0.995</td>
<td>0.847</td>
</tr>
</tbody>
</table>

markers could be a useful target for the development of SCAR markers which will be useful for large scale screening of *Jatropha* accessions (Basha and Sujatha, 2007). Cophenetic matrix comparison studies carried out to compare the genetic similarity and clustering patterns showed a very good fit between RAPD and DAMD markers but comparatively less fit between RAPD and ISSR markers. This may be due to the different genome target sites of the two markers. The combined correlation analysis revealed a very good correlation for all the combinations which all the combinations which included RAPD with RAPD+DAMD and ISSR+DAMD, DAMD with RAPD+DAMD, ISSR+DAMD and ISSR with ISSR+DAMD. All the combinations of RAPD, ISSR and DAMD with RAPD+DAMD+ISSR revealed a very good correlation.

CONCLUSIONS

It can be concluded from the present study that all three markers were equally efficient for diversity studies. Moreover, it can also be concluded that large number of parameters need to be calculated to judge the best marker as polymorphism percentage, marker index, PIC, and Rp values were higher for RAPD marker but the remaining parameters i.e. Shannon index, Observed and effective number of alleles, and Nei’s diversity were highest for ISSR marker followed by DAMD. All the three markers viz. RAPD, ISSR, and DAMD proved to be the potential tools to carry out future population genetic studies in *Jatropha* germplasm. Also, the phylogenetic and PCA analysis based on RAPD data generated region specific clustering patterns that revealed geographical variation, which may be due to selection pressure exerted upon the accessions due to the differences in the environmental conditions. Such kind of specificity was not observed for accessions from Gujarat and its neighboring regions but only for distant regions like Assam and Ranchi. Thus, to achieve better conclusions, still wider geographic regions with more number of accessions need to be investigated.

The prior investigations that indicated the possibility of *J. tanjorensis* to be a naturally occurring interspecific hybrid between *J. gossypiifolia* and *J. curcas* were confirmed by all the three markers. Results of the present investigation can be helpful for future researchers to define the inter- and intraspecific genetic diversity and, also, to detect the hybrids among these species.

The unique alleles obtained can be further investigated through cloning and sequencing approaches and thereby developing even more efficient species specific markers (SCARs) for amplification. These markers along with SSRs can be used for further breeding programs through Marker Assisted Selection and also in selective cultivation of specific variety for species improvement.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Department of Agricultural Biotechnology, Anand Agricultural University, for providing the facilities and financial support to conduct this study.

REFERENCES

مقایسه نشانگر های راید (DAMD) و RAPD در Jatropha curcas L. برای ارزیابی تنوع زرتیکی.

جی. تانجورنسیس

س. گاوتاب مورتنی، ف. پاتل، ب. پاتل، م. پاتل، ا. سینگت، و. ر. فوگات

چکیده