فیلمون آلیاژ اجباس محدود برای تحلیل استاتیک، غیرخطی و رهای اروتوتروپ با استفاده
سید جعفر روژگار*، سید محمد سیدین

چکیده
در این مقاله به اجرای فرمولی که برای محاسبه شیک خمش غیرخطی و رهای اروتوتروپ و اروتوتروپ براساس تئوری دو متغیره اصلی هم‌کنش دارد، این تئوری از توابع خاصی از داده شده می‌باشد. این تئوری از توانایی اثربخشی بر این تئوری دو متغیره اصلی استفاده می‌نماید. در این تئوری، دو متغیره اصلی، دو متغیره اصلی و خمش غیرخطی، دو متغیره اصلی و استفاده در اجرای توانایی اثربخشی بر این تئوری دو متغیره اصلی استفاده می‌نماید. در این تئوری، دو متغیره اصلی، دو متغیره اصلی و خشم غیرخطی، دو متغیره اصلی و استفاده در اجرای توانایی اثربخشی بر این تئوری دو متغیره اصلی استفاده می‌نماید.

Finite element formulation for non-linear static analysis of orthotropic plates using two-variable refined plate theory

Jafar Rouzegar*, Mohammad Sayedain

Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran

* P.O.B. 7155-313 Shiraz, Iran, rouzegar@utech.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 22 September 2015
Accepted 02 November 2015
Available Online 30 November 2015

Keywords:
Finite Element Method
Non-linear bending
Two-Variable Refined Plate Theory
Thick Plate
Newton–Raphson Method

ABSTRACT

A finite element formulation for bending analysis of isotropic and orthotropic plates based on two-variable refined plate theory is developed in this paper. The two-variable refined plate theory which can be used for both thin and thick plates predicts parabolic variation of transverse shear stresses across the plate thickness and therefore, it does not need shear correction factor in the formulation and the zero stress conditions are satisfied on free surfaces. The von-Karman nonlinear terms are considered in strain-displacement equations and governing equations are derived using the Hamilton's principle. After constructing weak form equations, a new 4-node rectangular plate element with six degrees of freedom at each node is used for discretization of the domain. The non-linear coupled governing equations are solved by Newton–Raphson method. The finite element code is written in MATLAB which can be used for analysis of thin and thick, isotropic and orthotropic plates with various boundary conditions. Some benchmark problems are solved by the developed code and the obtained displacements and stresses are compared with the existing results in the literature which show the accuracy and efficiency of presented finite element formulation.

Please cite this article using:

سرعت آن نیز افزوده شده در این مقاله برای اولین بار از کیفیت عمودی نور مصرف فرornتیبی از اجزای محمد بهترین بررسیهای خودکار و ازونتیبی با استفاده از ارزیابی از لایه منظره ویکی بار توسط از شاری: فرornتیبی در این مقاله نشان داده شده که این نتایج ارزیابی خودکار و ازونتیبی با استفاده از لایه منظره ویکی بار توسط از شاری: فرornتیبی در این مقاله نشان داده شده که این نتایج بانده با منظور گریز از مشکلات ارزیابی بررسی مربوط اول: ارزیابی بررسی مربوط به وجود امکان در این مقاله استفاده شده (7) می‌باشد.

2 - توده دو منبر و رق

در بررسی دو منبری، که بررسی رهبری استفاده می‌شود که هر شعله و نشان دهنده مهیج بوده و نشان‌های بررسی خارج از صفحه را در انتخاب ضخامت به صورت سه‌بخشی بینی می‌گیرد. این بررسی برای بیان فرضیه‌های که در زیر آمده است استفاده شده است:

1- روابط خاتمالی: جابجایی از نظر گرفتن تهیه‌های غیرخطی با صورت

\[\begin{align*}
\frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial v}{\partial y} + \frac{1}{2} \frac{\partial w}{\partial z} = \frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right) + f_x
\end{align*}\]

2- جابجایی در راه‌های از ۷، ۳ و ۷ دو موفقیت خشکی و بررسی بوده که در راه‌هایی از (2) (4) با ارزیابی یک و (6) و (16) محقق شده‌اند.

\[\begin{align*}
\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} + \rho w \frac{\partial u}{\partial z} = \frac{\partial P}{\partial x} + \rho \left(\frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} \right) + \frac{\partial m}{\partial x}
\end{align*}\]

3- شرایط اولیه و رق \(x_0\) در مقایسه با دیگر موفقیت‌های نشان‌گر قابل مستحکم است:

\[\begin{align*}
\sigma_x &= q_{11} q_{12} q_{13} q_{21} q_{22} q_{23} q_{31} q_{32} q_{33} \quad f_x \\
\tau_{xy} &= 0 \\
\tau_{yz} &= 0 \\
\tau_{xz} &= 0
\end{align*}\]

که \(q_{ij}\)'ها از جمله استفاده می‌شود:

\[\begin{align*}
q_{11} &= 1 - \mu_1 \rho \frac{\partial u}{\partial x} \\
q_{12} &= \frac{\rho}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \quad (5)
\end{align*}\]

4- شرایط اولیه و رق \(x_0\) در مقایسه با دیگر موفقیت‌های نشان‌گر قابل مستحکم است:

\[\begin{align*}
\delta_e &= f = 0
\end{align*}\]

5- معادله حاکم

\[\begin{align*}
\frac{\partial u}{\partial t} + \frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} = \frac{\partial p}{\partial x} + \rho \left(\frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} \right) + \frac{\partial m}{\partial x}
\end{align*}\]
که در این رابطه ضرایب صلیب خمیشی و بریش به صورت زیر تعیین می‌شوند:

\[
\begin{aligned}
D_{11} &= \frac{Q_{11} h^3}{12}, \\
D_{22} &= \frac{Q_{22} h^3}{12}, \\
D_{12} &= \frac{Q_{12} h^3}{12}, \\
D_{66} &= \frac{Q_{66} h^3}{12}, \\
A_{44} &= \frac{5Q_{44} h}{6}, \\
A_{55} &= \frac{5Q_{55} h}{6}
\end{aligned}
\] (12)

4- فرمول ندی اجزای حمل

در این مقاله برای بدست آوردن شکل ضعف معادلات حافم و نهایتاً فرمول‌بندی اجزای محدود از اصل همیلتن استفاده شده است. اگر اجزای گریزی و جنبشی و رابط های با استفاده از روش تغییرات، فرم ضعف معادلات حافم مکانیک را ایجاد می‌نماید (13) بعد می‌آید.

\[
0 = \rho h^3 \int \left[\left(\frac{\partial^4 w_b}{\partial x^4} + \frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) \frac{\partial^4 w_b}{\partial y^2} \right] dxdy + \int \left[\left(\frac{\partial^4 w_b}{\partial x^4} + \frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) \frac{\partial^4 w_b}{\partial y^2} \right] dxdy
\]

\[
U = \frac{f_{x_0}^x y_{y_0}^{y_0}}{x_{y_0}^{y_0}} \left[\frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} + \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} + \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} + \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} \right] dxdy
\] (8)

\[
T = \frac{f_{x_0}^x y_{y_0}^{y_0}}{x_{y_0}^{y_0}} \left[\frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} + \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} + \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} + \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial y^2} \right] dxdy
\] (9)

معادله حافم با ورود گیرنده اجزای گریزی و جنبشی و صفحات را در اصل همیلتن طبق روابط (10) و (11) بدست می‌آید.

\[
D_{11} \left(\frac{\partial^4 w_b}{\partial x^4} + \frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) + D_{22} \left(\frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) + D_{66} \left(\frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) + 4D_{44} \frac{\partial^2 w_b}{\partial x^2} \frac{\partial^2 w_b}{\partial y^2} - \rho h^3 \frac{\partial^2 \psi}{\partial x^2} = q
\] (10)

\[
D_{11} \left(\frac{\partial^4 w_b}{\partial x^4} + \frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) + D_{22} \left(\frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) + D_{66} \left(\frac{\partial^2 w_b}{\partial y^2} \frac{\partial^2 w_b}{\partial x^2} + \frac{\partial^2 w_b}{\partial x^2} \right) + 4D_{44} \frac{\partial^2 w_b}{\partial x^2} \frac{\partial^2 w_b}{\partial y^2} - \rho h^3 \frac{\partial^2 \psi}{\partial x^2} = q
\] (11)
در رابطه فوق به ترتیب گشتاور خمی و نرخ خرید و عرض نشان می‌دهد.

dsk نشان می‌دهد که در شکل برداری ضعیف شده به صورت رابطه (14) بیان شده است.

\[
0 = \left[I_0(\delta w_b) \right] \left[w_b \right] + I_0(\delta w_b) \left[\frac{1}{8} \left(\frac{1}{8} \right) \right] dx dy + \left[I_0(\delta w_b) \right] \left[w_b \right] + \left[\frac{1}{8} \left(\frac{1}{8} \right) \right] dx dy \]

(14)

\[
k = A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{55} \end{bmatrix}, \quad D = \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D_{66} \end{bmatrix}
\]

(15)

\[
w_b(x,y) = \sum_{n=1}^{\infty} \Delta_n w_n(x,y) = N T A
\]

(16)

\[
M_{11} M_{12} M_{13} M_{21} M_{22} M_{23} M_{31} M_{32} M_{33}
\]

(17)

\[
K_{11} K_{12} K_{13} K_{21} K_{22} K_{23} K_{31} K_{32} K_{33}
\]

(18)
جدول 1. فاصله هموگلاپی خیز و نش نرمالی به برای ورق مربعی ایزوتوبیک

<table>
<thead>
<tr>
<th>h/a</th>
<th>0.1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{12}</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>ρ_{21}</td>
<td>0.558</td>
<td>0.339</td>
<td>0.566</td>
</tr>
</tbody>
</table>

جدول 2. مقاومت خیز و نش نرمالی به برای ورق مربعی ایزوتوبیک تحت برداره.

<table>
<thead>
<tr>
<th>h/a</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{12}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_{21}</td>
<td>0.558</td>
<td>0.339</td>
</tr>
</tbody>
</table>

جدول 3. ویژگی‌های فلزات اورتوبیک

σ_{11}	0.465	0.263
σ_{22}	0.687	0.483
σ_{33}	0.758	0.572
σ_{12}	0.558	0.339
σ_{23}	0.657	0.458
σ_{31}	0.748	0.562

جدول 4. مقاومت خیز و نش نرمالی به برای ورق مربعی ایزوتوبیک تحت

<table>
<thead>
<tr>
<th>h/a</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{12}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_{21}</td>
<td>0.558</td>
<td>0.339</td>
</tr>
</tbody>
</table>

جدول 5. مقاومت خیز و نش نرمالی به برای ورق مربعی ایزوتوبیک تحت

<table>
<thead>
<tr>
<th>h/a</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{12}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_{21}</td>
<td>0.558</td>
<td>0.339</td>
</tr>
</tbody>
</table>

جدول 6. مقاومت خیز و نش نرمالی به برای ورق مربعی ایزوتوبیک تحت

<table>
<thead>
<tr>
<th>h/a</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{12}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_{21}</td>
<td>0.558</td>
<td>0.339</td>
</tr>
</tbody>
</table>

جدول 7. مقاومت خیز و نش نرمالی به برای ورق مربعی ایزوتوبیک تحت

<table>
<thead>
<tr>
<th>h/a</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{12}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_{21}</td>
<td>0.558</td>
<td>0.339</td>
</tr>
</tbody>
</table>

جدول 8. مقاومت خیز و نش نرمالی به برای ورق مربعی ایزوتوبیک تحت

<table>
<thead>
<tr>
<th>h/a</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{12}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_{21}</td>
<td>0.558</td>
<td>0.339</td>
</tr>
</tbody>
</table>
Table 5 Comparison of deflections and stresses of simply supported orthotropic plate subjected to uniformly distributed load considering different thickness and aspect ratio ($q = 1$).

<table>
<thead>
<tr>
<th>θ</th>
<th>Δ</th>
<th>$\bar{\sigma}$</th>
<th>$\bar{\sigma}_x$</th>
<th>$\bar{\sigma}_y$</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.5223</td>
<td>0.0396</td>
<td>0.0396</td>
<td>0.0396</td>
<td>0.5223</td>
</tr>
<tr>
<td>0.10</td>
<td>0.5437</td>
<td>0.0378</td>
<td>0.0378</td>
<td>0.0378</td>
<td>0.5437</td>
</tr>
<tr>
<td>0.15</td>
<td>0.5630</td>
<td>0.0365</td>
<td>0.0365</td>
<td>0.0365</td>
<td>0.5630</td>
</tr>
<tr>
<td>0.20</td>
<td>0.5826</td>
<td>0.0353</td>
<td>0.0353</td>
<td>0.0353</td>
<td>0.5826</td>
</tr>
<tr>
<td>0.25</td>
<td>0.6022</td>
<td>0.0341</td>
<td>0.0341</td>
<td>0.0341</td>
<td>0.6022</td>
</tr>
</tbody>
</table>

Table 6 Comparison of normalized deflections and normal stress of orthotropic square plate considering different applied load and boundary conditions ($h/a = 0.02$).

<table>
<thead>
<tr>
<th>$\bar{\sigma}$</th>
<th>$\bar{\sigma}_x$</th>
<th>Δ</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0660</td>
<td>0.0660</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.0142</td>
<td>0.0142</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>0.0284</td>
<td>0.0284</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0.0325</td>
<td>0.0325</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3 normalized central deflection obtained for different plate normalized load for a simply supported square plate ($h/a = 0.2$).

$$h/a = 0.2$$

The normalized central deflection obtained for different plate normalized load for a simply supported square plate. The figure shows the normalized deflection versus the normalized load for different plate dimensions. The normalized deflection is defined as δ/δ_{max}, where δ_{max} is the maximum deflection.

References: